Laser Spectroscopy of exotic indium (Z = 49) isotopes: Approaching the N = 50 and N = 82 neutron numbers

Ronald Fernando Garcia Ruiz The University of Manchester

On behalf of the CRIS collaboration

55th Meeting of the INTC Feb 2017

Motivation

Doubly "magic" 100Sn

Doubly "magic" ¹³²Sn

[Hinke et al. Nature 486, 341 (2012)]

[Jones et al. Nature 465, 454 (2010)]

- Evolution of collectivity / single particle approaching the N=Z=50 and N=82 shell closures?
- Robustness of N=Z=50 shell closures?

Robust ? [Hinke *et al.* Nature 486, 341 (2012)] [Guastalla *et al.*, PRL 110, 172501 (2013)]

Sof? [Vaman et al., PRL 99, 162501 (2007)] [Coraggio et al. PRC 91, 041301(R) (2015)]

Ordering of shell-model orbits
 Contradictory evidence!

[Darby et al. PRL 105, 162502 (2010)] [Banu et al. PRC 72, 061305(R) (2005)] [Seweryniak et al. PRL 99, 022504 (2007)]

- Proton-neutron interaction?
- Role of electro-weak currents?

[Yuan et al. PLB 762, 237 (2016)] [Rejmund et al. PLB 753, 86 (2016)]

Motivation

Laser spectroscopy

I , Δ < r^2 , μ , Q

Nuclear force

- Phenomenology
- Chiral effective field theory

[Phys. Rev. Lett. 115, 122301 (2015)] [Rev. Mod. Phys. 81, 1773 (2009)] [Rev. Mod. Phys. 85, 197 (2013)]

•••

Many-body methods

- Ab-initio
- > Shell-model
- Mean-field, DFT...

[Phys. Rep. 621, 165 (2016)] [Rev. Mod. Phys. 87, 1067 (2015] [Rev. Mod. Phys. 77, 424 (2005)]

Electro-weak currents

- Effective neutron/proton charges
- Microscopic description of effective operators

[Rev. Mod. Phys. 87, 1067 (2015)] [Phys Rev. Lett. 113, 262504 (2014)] [Phys. Rev. C 87, 035503 (2013)]

- ☐ Ground-state spins are essential for our understanding of nuclear structure
- ☐ Charge radii provides a test to inter-nucleon interactions and many-body methods

[Hagen et al, Nature Physics 12, 186 (2016)] [Garcia Ruiz et al, Nature Physics 12, 594 (2016)]

☐ Electromagnetic moments are sensitive probes to the role of electro-weak currents

[Pastore et al. PRC 87, 035503 (2013)] [Carlson et al. Rev. Mod. Phys. 87, 1067 (2015)] [Ekstrom et al. PRL 113, 262504 (2014)]

Can these studies be extended to indium isotopes?

Motivation

Laser spectroscopy \Rightarrow

I, $\Delta \langle r^2 \rangle$, μ , Q

Nuclear force

- Phenomenology
- Chiral effective field theory

Many-body methods

- > Ab-initio
- > Shell-model
- Mean-field, DFT...

Electro-weak currents

- Effective neutron/proton charges
- Microscopic description of effective operators

Status of ab-initio calculations (2016)

[Hagen et al, Nature Physics 12, 186 (2016)] [Garcia Ruiz et al, Nature Physics 12, 594 (2016)]

✓ Ni region

[Stroberg et al. Phys. Rev. Lett. 118, 032502 (2017)] [Hagen et al , Phys. Rev. Lett 117, 172501 (2016)]

○ Sn region ?

New developments in EFT + Normalization group + many-body methods:

Coupled clusters [Hagen et al. Phys. Rev. Lett 117, 172501 (2016)]

In-Medium SRG [Phys. Rev. Lett 118, 032502 (2017)]

Gorkov-Green Function [Phys. Rev. Lett 117, 052501 (2016)]

•••

Ab-initio results around ¹⁰⁰In

☐ Ground-state spins are essential for our understanding of nuclear structure

New experimental results expected from this proposal

Lots of unknowns!

 Evolution of collectivity / single particle approaching the N=Z=50 and N=82 shell closures?

○ Role of correlations across N=Z=50 and N=82?

Odd-even isotopes

Dominant single-particle?

- Evolution of collectivity / single particle approaching the N=Z=50 and N=82 shell closures?
- Role of correlations across N=Z=50 and N=82?
- O Proton-neutron interaction?
- High-spin isomers / exotic decays

Odd-odd isotopes

- New isomers predicted
- Role of proton-neutron interaction
- High-spin isomers/neutron emission

[Yuan et al. Phys. Lett. B 762, 237 (2016)]

(Based on large scale shell-model calculations)

Indium isotopes can "reveal novel aspects of the competition between the proton-neutron interaction and the like-nucleon pairing interaction"

[Rejmund et al. Phys. Lett. B 753, 86 (2016)]

Ground states

- Evolution of collectivity / single particle approaching the N=Z=50 and N=82 shell closures?
- Role of correlations across N=Z=50 and N=82?
- O Proton-neutron interaction?
- High-spin isomers / exotic decays
- o Role of electro-weak currents?
- Microscopic origin of effective operators?
 Effective charges and g-factors

"..Still, the unusual magnetic moments of the I=1/2 isomeric states represent an unresolved puzzle and may require a reconsideration of the overall nuclear structure of these isotopes"

[J. Eberz Nucl. Phys A 464 (1987) Q-28]

 \rightarrow p_{1/2} moments insensitive to first-order core polarisation

odd	/+1/2	$-\frac{(l+2)l_1}{(2l+3)(2l_1+1)} \times \left\{ \dots \right\}$
proton	<i>l</i> −1/2	$\frac{(l-1)l_1}{(2l+1)(2l_1+1)}\times\Big\{\cdots$

[Arima and H. Horie, Prog. Theor. Phys. 12, 623 (1954)]

→ Sensitive to many-body currents (?)

☐ Electromagnetic moments are sensitive probes to the role of electro-weak currents

Radioactive ions • from ISOLDE

Beam time request

						_
Isotope	I (Tentative)	Half life	Yield (ions/s)	Target+RILIS	Shifts	_
$^{100}\mathrm{In}$	$(6^+, 7^+)$	$7.0 \mathrm{\ s}$	16	LaC_x	6	_
$^{101}{ m In}$	$(9/2^{+})$	15 s	380	LaC_x	2	
$^{102}{ m In}$	(6^{+})	$22 \mathrm{s}$	8.6×10^{3}	LaC_x	0.5	
$^{103}{ m In}$	$(9/2^+)$	65 s	8.0×10^{4}	LaC_x	0.5	
$^{103m}{ m In}$	$(1/2^{-})$	$34 \mathrm{\ s}$	$>10^{2}$	LaC_x	1	
$^{104m}\mathrm{In}$	(3^{+})	$15.7 \mathrm{\ s}$	$>10^{2}$	LaC_x	1	
$^{105m}{ m In}$	$(1/2^{-})$	48 s	$>10^{4}$	LaC_x	0.3	
$^{106m}{ m In}$	(2^{+})	$5.2 \mathrm{m}$	$>10^{4}$	LaC_x	0.3	
$^{107m}\mathrm{In}$	$1/2^{-}$	$50.4 \mathrm{\ s}$	$>10^{5}$	LaC_x	0.3	
$^{109m_1}{ m In}$	$1/2^{-}$	$1.34~\mathrm{m}$	$>10^{3}$	LaC_x	0.3	
$^{109m_2}{ m In}$	$(19/2^{-})$	$0.21 \mathrm{\ s}$	$>10^{3}$	LaC_x	0.3	
$^{111m}{ m In}$	$(1/2^{-})$	$7.7 \mathrm{m}$	$>10^{3}$	LaC_x	0.3	
$^{118m}{ m In}$	(1^{+})	$5.0 \mathrm{\ s}$	$>10^{5}$	LaC_x	0.3	_
$^{120m}\mathrm{In}$	(1^{+})	$3.1 \mathrm{\ s}$	$> 10^4$	LaC_x	0.3	8/8
$^{122m}\mathrm{In}$	(1^{+})	$1.5 \mathrm{\ s}$	$>10^{2}$	LaC_x	1	Ĕ
$^{112-122}{ m In}$	_	>1 s	$\geq 10^{4}$	LaC_x	4	Beam intensity (ions/s
$^{112-122}In$	_	>1 s	$\geq 10^{4}$	UC_x	2^i	Ě
$^{124m}\mathrm{In}$	(1^{+})	$3.1 \mathrm{\ s}$	$>10^{2}$	UC_x	0.5	ű
$^{127m_1}\mathrm{In}$	$(1/2^{-})$	$3.7 \mathrm{\ s}$	$>10^{2}$	UC_x	0.5	ž
$^{127m_2}\mathrm{In}$	(21^{+})	$1.0 \mathrm{\ s}$	$>10^{2}$	UC_x	0.5	Έ
$^{128}\mathrm{In}$	(3^{+})	$0.84 \mathrm{\ s}$	$>10^{4}$	UC_x	0.5	ea
$^{128m}\mathrm{In}$	(8^{-})	$0.72 \mathrm{\ s}$	$>10^{2}$	UC_x	1	Ď
$^{129}\mathrm{In}$	$(9/2^+)$	$0.61 \mathrm{\ s}$	$> 10^4$	UC_x	0.5^{ii}	
$^{129m_1}{ m In}$	$(1/2^{-})$	$1.23 \mathrm{\ s}$	$>10^{2}$	UC_x	1	
$^{129m_2}{ m In}$	$(23/2^{-})$	$0.67 \mathrm{\ s}$	$>10^{2}$	UC_x	1	
$^{130}\mathrm{In}$	(1^{-})	$0.29 \mathrm{\ s}$	$>10^{3}$	UC_x	0.5	
$^{130m_1}\mathrm{In}$	(10^{-})	$0.54 \mathrm{\ s}$	$>10^{2}$	UC_x	1	
$^{130m_2}{ m In}$	(5^{+})	$0.54 \mathrm{\ s}$	$>10^{2}$	UC_x	1	
$^{131}{ m In}$	$(9/2^+)$	$0.28 \mathrm{\ s}$	$>10^{3}$	UC_x	0.5	
$^{131m_1}{ m In}$	$(1/2^{-})$	$0.35 \mathrm{\ s}$	$>10^{2}$	UC_x	1	
$^{131m_2}\mathrm{In}$	$(21/2^+)$	$0.32 \mathrm{\ s}$	$>10^{2}$	UC_x	1	
$^{132}{ m In}$	(7^{-})	$0.20 \mathrm{\ s}$	1.6×10^{4}	UC_x	0.5	
133,133m In	$(9/2^+, 1/2^-)$	$165~\mathrm{ms}$	1.8×10^{3}	UC_x	1.5	
$^{134}\mathrm{In}$	(4- to 7-)	$138~\mathrm{ms}$	190	UC_x	4	_

18.5 + 18.5 shifts Lots of unknowns!

Beam time request

T4	I (T	II_10 1:0-	V:-1.1 (:/-)	Tt DILIC	CIL:C
Isotope 100In	I (Tentative)	Half life	Yield (ions/s)	Target+RILIS	Shifts
101In	$(6^+, 7^+)$	7.0 s	16	LaC_x	6
102I	$(9/2^+)$	15 s	380	LaC_x	2
¹⁰² In	(6+)	22 s	8.6×10^{3}	LaC_x	0.5
¹⁰³ In	$(9/2^+)$	65 s	8.0×10^4	LaC_x	0.5
103m In	$(1/2^{-})$	34 s	$>10^{2}$	LaC_x	1
104m In	(3^{+})	$15.7 \mathrm{\ s}$	$>10^{2}$	LaC_x	1
$^{105m}{ m In}$	$(1/2^{-})$	48 s	$>10^{4}$	LaC_x	0.3
$^{106m}{ m In}$	(2^{+})	$5.2 \mathrm{m}$	$>10^{4}$	LaC_x	0.3
$^{107m}\mathrm{In}$	$1/2^{-}$	$50.4 \mathrm{\ s}$	$>10^{5}$	LaC_x	0.3
$^{109m_1}{ m In}$	$1/2^{-}$	$1.34 \mathrm{m}$	$>10^{3}$	LaC_x	0.3
$^{109m_2}{ m In}$	$(19/2^{-})$	$0.21 \mathrm{\ s}$	$>10^{3}$	LaC_x	0.3
$^{111m}\mathrm{In}$	$(1/2^{-})$	$7.7 \mathrm{m}$	$>10^{3}$	LaC_x	0.3
$^{118m}{ m In}$	(1^{+})	$5.0 \mathrm{\ s}$	$>10^{5}$	LaC_x	0.3
$^{120m}{ m In}$	(1^{+})	$3.1 \mathrm{\ s}$	$>10^{4}$	LaC_x	0.3
$^{122m}\mathrm{In}$	(1^{+})	$1.5 \mathrm{\ s}$	$>10^{2}$	LaC_x	1
$^{112-122}{ m In}$	_	>1 s	$\geq 10^{4}$	LaC_x	4
^{112–122} In	_	>1 s	$\geq 10^{4}$	UC_x	2^i
$^{124m}\mathrm{In}$	(1^{+})	$3.1 \mathrm{\ s}$	$> 10^{2}$	UC_x	0.5
$^{127m_1}{ m In}$	$(1/2^{-})$	$3.7 \mathrm{\ s}$	$>10^{2}$	UC_x	0.5
$^{127m_2}{ m In}$	(21^{+})	$1.0 \mathrm{\ s}$	$>10^{2}$	UC_x	0.5
$^{128}\mathrm{In}$	(3^{+})	$0.84 \mathrm{\ s}$	$>10^{4}$	UC_x	0.5
$^{128m}\mathrm{In}$	(8-)	$0.72 \mathrm{\ s}$	$>10^{2}$	UC_x	1
$^{129}\mathrm{In}$	$(9/2^{+})$	$0.61 \mathrm{\ s}$	$> 10^4$	UC_x	0.5^{ii}
$^{129m_1}{ m In}$	$(1/2^{-})$	$1.23 \mathrm{\ s}$	$>10^{2}$	UC_x	1
$^{129m_2}{ m In}$	$(23/2^{-})$	$0.67 \mathrm{\ s}$	$>10^{2}$	UC_x	1
$^{130}\mathrm{In}$	(1^{-})	$0.29 \mathrm{\ s}$	$>10^{3}$	UC_x	0.5
$^{130m_1}{ m In}$	(10^{-})	$0.54 \mathrm{\ s}$	$>10^{2}$	UC_x	1
$^{130m_2}{ m In}$	(5^{+})	$0.54 \mathrm{\ s}$	$>10^{2}$	UC_x	1
$^{131}{ m In}$	$(9/2^{+})$	$0.28 \mathrm{\ s}$	$>10^{3}$	UC_x	0.5
$^{131m_1}\mathrm{In}$	$(1/2^{-})$	$0.35 \mathrm{\ s}$	$>10^{2}$	UC_x	1
$^{131m_2}{ m In}$	$(21/2^{+})$	$0.32 \mathrm{\ s}$	$>10^{2}$	UC_x	1
^{132}In	(7-)	$0.20 \mathrm{\ s}$	1.6×10^{4}	$\mathrm{UC}_x^{^x}$	0.5
133,133m In	$(9/2^+, 1/2^-)$	165 ms	1.8×10^{3}	UC_x	1.5
$^{134}\mathrm{In}$	(4- to 7-)	$138~\mathrm{ms}$	190	UC_x	4

18.5 + 18.5 shifts

TAC summary:

- 100In 16/s :ok
- -> 😊
- NanoLaCx (not currently possible)
- -> Not needed
- Impurities claimed Cs:
- -> Important for neutron-rich
- Level of Cs impurity needs to be assessed during beamtime...
 - -> Expected: 132Cs/132In ~ 102 133Cs/133In ~ 103 134Cs/134In ~ 104
- LaC: fluctuations in yield possible.
- ->We quoted lowest reported yields
- RILIS optimization for isomers could be needed for odd isotopes.
- -> Isotope shift corrections should be assessed at the start of the run. Knowledge acquired during previous IDS run.

Isotope	I (Tentative)	Half life
¹⁰⁰ In	$(6^+, 7^+)$	$7.0 \mathrm{\ s}$
$^{101}{ m In}$	$(9/2^+)$	15 s
$^{102}{ m In}$	(6^{+})	$22 \mathrm{\ s}$
$^{103}\mathrm{In}$	$(9/2^+)$	65 s
$^{103m}\mathrm{In}$	$(1/2^{-})$	$34 \mathrm{\ s}$
$^{104m}{ m In}$	(3^{+})	$15.7 \mathrm{\ s}$
$^{105m}{ m In}$	$(1/2^{-})$	48 s
$^{106m}{ m In}$	(2^{+})	$5.2 \mathrm{m}$
$^{107m}{ m In}$	$1/2^{-}$	$50.4 \mathrm{\ s}$
$^{109m_1}\mathrm{In}$	$1/2^{-}$	$1.34~\mathrm{m}$
$^{109m_2}{ m In}$	$(19/2^{-})$	$0.21 \mathrm{\ s}$
$^{111m}{ m In}$	$(1/2^{-})$	$7.7~\mathrm{m}$
$^{118m}{ m In}$	(1+)	$5.0 \mathrm{\ s}$
$^{120m}\mathrm{In}$	(1^{+})	$3.1 \mathrm{\ s}$
$^{122m}\mathrm{In}$	(1+)	$1.5 \mathrm{\ s}$
$^{112-122}{ m In}$		$>1 \mathrm{s}$
$^{112-122}In$	_	>1 s
$^{124m}{ m In}$	(1^{+})	$3.1 \mathrm{\ s}$
$^{127m_1}\mathrm{In}$	$(1/2^{-})$	$3.7 \mathrm{\ s}$
$^{127m_2}\mathrm{In}$	(21^{+})	$1.0 \mathrm{\ s}$
$^{128}\mathrm{In}$	(3^{+})	$0.84 \mathrm{\ s}$
$^{128m}{ m In}$	(8-)	$0.72 \mathrm{\ s}$
$^{129}\mathrm{In}$	$(9/2^+)$	$0.61 \mathrm{\ s}$
$^{129m_1}{ m In}$	$(1/2^{-})$	$1.23 \mathrm{\ s}$
$^{129m_2}\mathrm{In}$	$(23/2^{-})$	$0.67 \mathrm{\ s}$
$^{130}\mathrm{In}$	(1^{-})	$0.29 \mathrm{\ s}$
$^{130m_1}\mathrm{In}$	(10^{-})	$0.54 \mathrm{\ s}$
$^{130m_2}{ m In}$	(5^{+})	$0.54 \mathrm{\ s}$
$^{131}\mathrm{In}$	$(9/2^{+})$	$0.28 \mathrm{\ s}$
$^{131m_1}{ m In}$	$(1/2^{-})$	$0.35 \mathrm{\ s}$
$^{131m_2}{ m In}$	$(21/2^{+})$	$0.32 \mathrm{\ s}$
$^{132}\mathrm{In}$	(7^{-})	$0.20 \mathrm{\ s}$
$^{133,133m}{ m In}$	$(9/2^+, 1/2^-)$	$165~\mathrm{ms}$

 ^{134}In

 $(4^{-} \text{ to } 7^{-}$

138 ms

Laser spectroscopy \blacksquare I , $\triangle < r^2 >$, μ , Q

Nuclear force

- Phenomenology
- Chiral effective field theory

Many-body methods

- ➤ Ab-initio
- > Shell-model
- ➤ Mean-field, DFT...

Electro-weak currents

- ➤ Effective neutron/proton charges
- Microscopic description of effective operators

Isotope	I (Tentative)	Half life
100 In	$(6^+, 7^+)$	7.0 s
$^{101}{ m In}$	$(9/2^{+})$	$15 \mathrm{\ s}$
$^{102}{ m In}$	(6^{+})	$22 \mathrm{s}$
$^{103}{ m In}$	$(9/2^+)$	65 s
$^{103m}{ m In}$	$(1/2^{-})$	$34 \mathrm{\ s}$
$^{104m}{ m In}$	(3^{+})	$15.7 \mathrm{\ s}$
$^{105m}{ m In}$	$(1/2^{-})$	$48 \mathrm{\ s}$
$^{106m}{ m In}$	(2^{+})	$5.2 \mathrm{m}$
$^{107m}{ m In}$	$1/2^{-}$	$50.4 \mathrm{\ s}$
$^{109m_1}\mathrm{In}$	$1/2^{-}$	$1.34 \mathrm{\ m}$
$^{109m_2}{ m In}$	$(19/2^{-})$	$0.21 \mathrm{\ s}$
$^{111m}{ m In}$	$(1/2^{-})$	$7.7 \mathrm{m}$
$^{118m}{ m In}$	(1^{+})	$5.0 \mathrm{\ s}$
$^{120m}{ m In}$	(1^{+})	$3.1 \mathrm{\ s}$
$^{122m}{ m In}$	(1^{+})	$1.5 \mathrm{\ s}$
$^{112-122}{ m In}$	_	>1 s
$^{112-122}In$	_	>1 s
$^{124m}\mathrm{In}$	(1^{+})	$3.1 \mathrm{\ s}$
$^{127m_1}\mathrm{In}$	$(1/2^{-})$	$3.7 \mathrm{\ s}$
$^{127m_2}\mathrm{In}$	(21^{+})	$1.0 \mathrm{\ s}$
$^{128}\mathrm{In}$	(3^{+})	$0.84 \mathrm{\ s}$
$^{128m}{ m In}$	(8^{-})	$0.72 \mathrm{\ s}$
$^{129}\mathrm{In}$	$(9/2^+)$	$0.61 \mathrm{\ s}$
$^{129m_1}{ m In}$	$(1/2^{-})$	$1.23 \mathrm{\ s}$
$^{129m_2}{ m In}$	$(23/2^{-})$	$0.67 \mathrm{\ s}$
$^{130}\mathrm{In}$	(1^{-})	$0.29 \mathrm{\ s}$
$^{130m_1}\mathrm{In}$	(10^{-})	$0.54 \mathrm{\ s}$
$^{130m_2}{ m In}$	(5^{+})	$0.54 \mathrm{\ s}$
$^{131}{ m In}$	$(9/2^{+})$	$0.28 \mathrm{\ s}$
$^{131m_1}\mathrm{In}$	$(1/2^{-})$	$0.35 \mathrm{\ s}$
$^{131m_2}{ m In}$	$(21/2^{+})$	$0.32 \mathrm{\ s}$
$^{132}\mathrm{In}$	(7^{-})	$0.20 \mathrm{\ s}$
133,133m In	$(9/2^+, 1/2^-)$	165 ms
$^{134}\mathrm{In}$	$(4^- \text{ to } 7^-)$	138 ms

Laser spectroscopy	\Rightarrow	I , Δ < $r^2>$, μ ,	Q
--------------------	---------------	-----------------------------------	---

Nuclear force

- ➤ Phenomenology
- Chiral effective field theory

Many-body methods

- ➤ Ab-initio
- > Shell-model
- ➤ Mean-field, DFT...

Electro-weak currents

- ➤ Effective neutron/proton charges
- Microscopic description of effective operators

Indium isotopes offer a unique insight to understand the structure around N=Z=50 and N=82

√ 100In: key physics case for our understanding of nuclear structure around N=Z=50
and the development of inter-nucleon interactions and many-body methods

Isotope	I (Tentative)	Half life
$^{100}\mathrm{In}$	$(6^+, 7^+)$	$7.0 \mathrm{\ s}$
$\mathbf{\overline{l}^{101}In}$	$(9/2^+)$	$15 \mathrm{s}$
$^{102}\mathrm{In}$	(6^{+})	22 s
Cios In	$(9/2^+)$	$65 \mathrm{s}$
103m In	(1/2)	$34 \mathrm{\ s}$
$^{104m}{ m In}$	(3^{+})	$15.7 \mathrm{\ s}$
$^{105m}{ m In}$	$(1/2^{-})$	48 s
$^{106m}\mathrm{In}$	(2^{+})	$5.2 \mathrm{m}$
$^{107m}\mathrm{In}$	$1/2^{-}$	$50.4 \mathrm{\ s}$
$^{109m_1}\mathrm{In}$	$1/2^{-}$	$1.34 \mathrm{\ m}$
$^{109m_2}{ m In}$	$(19/2^{-})$	$0.21 \mathrm{\ s}$
$^{111m}{ m In}$	$(1/2^{-})$	$7.7~\mathrm{m}$
$^{118m}{ m In}$	(1^{+})	$5.0 \mathrm{\ s}$
$^{120m}\mathrm{In}$	(1^{+})	$3.1 \mathrm{\ s}$
$^{122m}\mathrm{In}$	(1+)	$1.5 \mathrm{\ s}$
$^{112-122}{ m In}$	_	>1 s
$^{112-122}In$	_	>1 s
$^{124m}\mathrm{In}$	(1^+)	$3.1 \mathrm{\ s}$
$^{127m_1}\mathrm{In}$	$(1/2^{-})$	$3.7 \mathrm{\ s}$
$^{127m_2}{ m In}$	(21^{+})	$1.0 \mathrm{\ s}$
$^{128}\mathrm{In}$	(3+)	$0.84 \mathrm{\ s}$
$^{128m}\mathrm{In}$	(8-)	$0.72 \ { m s}$
\sim 129 ${ m In}$	$(9/2^{+})$	0.61 s
$^{129m_1}{ m In}$	$(1/2^{-})$	$1.23 \mathrm{\ s}$
$^{129m_2}{ m In}$	$(23/2^{-})$	$0.67 \mathrm{\ s}$
$^{130}\mathrm{In}$	(1-)	$0.29 \mathrm{\ s}$
$^{130m_1}\mathrm{In}$	(10^{-})	$0.54 \mathrm{\ s}$
$^{130m_2}{ m In}$	(5^{+})	$0.54 \mathrm{\ s}$
I31In	$(9/2^{+})$	$0.28 \; s$
$^{131m_1}\mathrm{In}$	$(1/2^{-})$	$0.35 \mathrm{\ s}$
$^{131m_2}\mathrm{In}$	$(21/2^{+})$	$0.32 \mathrm{\ s}$
$^{132}\mathrm{In}$	(7^{-})	$0.20 \mathrm{\ s}$
135,133m In	$(9/2^+, 1/2^-)$	165 ms
$^{134}\mathrm{In}$	(4 ⁻ to 7 ⁻)	138 ms

I, Δ < r^2 >, μ , QLaser spectroscopy

Nuclear force

- ➤ Phenomenology
- > Chiral effective field theory

Many-body methods

- ➤ Ab-initio
- > Shell-model
- ➤ Mean-field, DFT...

Electro-weak currents

- Effective neutron/proton charges
- Microscopic description of effective operators

- √ 100In: key physics case for our understanding of nuclear structure around N=Z=50 and the development of inter-nucleon interactions and many-body methods
- $\sqrt{I=9/2}$ states: Evolution of single-particle/collectivity approaching N=Z=50 and N=82

Isotope	I (Tentative)	Half life
$^{100}\mathrm{In}$	$(6^+, 7^+)$	$7.0 \mathrm{\ s}$
$^{101}{ m In}$	$(9/2^+)$	15 s
$^{102}\mathrm{In}$	(6^{+})	22 s
$^{103}{ m In}$	$(9/2^+)$	65 s
\mathbf{C}^{103m} In	$(1/2^{-})$	$34 \mathrm{s}$
$^{104m}{ m In}$	(3^{+})	$15.7 \mathrm{\ s}$
105mIn	$(1/2^{-})$	48 s
$^{106m}\mathrm{In}$	(2+)	$5.2 \mathrm{m}$
\mathbf{C}^{107m} In	$1/2^{-}$	50.4 s
199mi In	1/2-	1.34 m>
$^{109m_2}{ m In}$	$(19/2^{-})$	$0.21 \; s$
$^{111m}{ m In}$	$(1/2^{-})$	$7.7 \mathrm{\ m}$
$^{118m}{ m In}$	(1+)	$5.0 \mathrm{\ s}$
$^{120m}\mathrm{In}$	(1^{+})	$3.1 \mathrm{\ s}$
$^{122m}\mathrm{In}$	(1+)	$1.5 \mathrm{\ s}$
$^{112-122}{ m In}$		>1 s
$^{112-122}In$	_	>1 s
$^{124m}\mathrm{In}$	(1^{+})	$3.1 \mathrm{\ s}$
$127m_1 \text{In}$	$(1/2^{-})$	$3.7 \mathrm{s}$
$^{127m_2}\mathrm{In}$	(21+)	1.0 s
$^{128}\mathrm{In}$	(3+)	$0.84 \mathrm{\ s}$
$^{128m}{ m In}$	(8-)	$0.72 \mathrm{\ s}$
$^{129}\mathrm{In}$	$(9/2^{+})$	$0.61 \mathrm{\ s}$
$129m_1 \text{In}$	$(1/2^{-})$	$1.23 \ {\rm s}$
$^{129m_2}{ m In}$	$(23/2^{-})$	$0.67 \ s$
$^{130}\mathrm{In}$	(1-)	$0.29 \mathrm{\ s}$
$^{130m_1}{ m In}$	(10^{-})	$0.54 \mathrm{\ s}$
$^{130m_2}{ m In}$	(5^{+})	$0.54 \mathrm{\ s}$
$^{131}{ m In}$	(9/2+)	$0.28 \mathrm{\ s}$
$^{\mathrm{Io}_{1}m_{1}}\mathrm{In}$	$(1/2^{-})$	$0.35 \ s$
$^{131m_2}{ m In}$	(21/2+)	$0.32 \mathrm{\ s}$
$^{132}\mathrm{In}$	(7-)	$0.20 \mathrm{\ s}$
135,133m In	$(9/2^+, 1/2^-)$	165 ms
$^{134}\mathrm{In}$	(4 ⁻ to 7 ⁻)	138 ms

I, $\Delta \langle r^2 \rangle$, μ , \overline{Q} Laser spectroscopy

Nuclear force

- ➤ Phenomenology
- > Chiral effective field theory

Many-body methods

- ➤ Ab-initio
- > Shell-model
- ➤ Mean-field, DFT...

Electro-weak currents

- Effective neutron/proton charges
- Microscopic description of effective operators

- √ 100In: key physics case for our understanding of nuclear structure around N=Z=50 and the development of inter-nucleon interactions and many-body methods
- $\sqrt{I=9/2}$ states: Evolution of single-particle/collectivity approaching N=Z=50 and N=82
- $\sqrt{I=1/2}$ states: Understating of higher order configuration mixing? Electro-weak currents in the M1 operator?

Isotope	I (Tentative)	
100In	$(6^+, 7^+)$	7.0 s
$^{101}{ m In}$	$(9/2^+)$	15 s
$^{102}\mathrm{In}$	(6^{+})	$22 \mathrm{s}$
$^{103}\mathrm{In}$	$(9/2^{+})$	$65 \mathrm{\ s}$
$^{103m}\mathrm{In}$	$(1/2^{-})$	$34 \mathrm{\ s}$
$^{104m}\mathrm{In}$	(3^{+})	$15.7 \mathrm{\ s}$
$^{105m}{ m In}$	$(1/2^{-})$	$48 \mathrm{\ s}$
$^{106m}{ m In}$	(2^{+})	5.2 m
$^{107m}\mathrm{In}$	$1/2^{-}$	$50.4 \mathrm{\ s}$
$^{109m_1}{ m In}$	$1/2^{-}$	1.34 m
$109m_2$ In	$(19/2^{-})$	0.21 s
$^{111m}\mathrm{In}$	$(1/2^{-})$	7.7 m
118mIn	(1+)	$5.0 \mathrm{s}$
120 mIn	(1+)	3.1 s
111	(1+)	$1.5 \mathrm{s}$
$^{112-122}{ m In}$		>1 s
$^{112-122}$ In	_	>1 s
$^{124m}\mathrm{In}$	(1^+)	$3.1 \mathrm{\ s}$
$^{127m_1}\mathrm{In}$	$(1/2^{-})$	$3.7 \mathrm{\ s}$
$^{121m_2}{ m In}$	(21^{+})	$1.0 \mathrm{s}$
$^{128}\mathrm{In}$	(3+)	$0.84 \mathrm{\ s}$
$^{128m}\mathrm{In}$	(8-)	$0.72 \mathrm{\ s}$
$^{129}\mathrm{In}$	$(9/2^{+})$	$0.61 \mathrm{\ s}$
$^{129m_1}{ m In}$	$(1/2^{-})$	$1.23 \mathrm{\ s}$
\sim 129m_2 In	$(23/2^{-})$	0.67
130 n	(i-)	$0.29 \mathrm{\ s}$
$130m_1$ In	(10^{-})	$0.54 \mathrm{s}$
$^{130m_2}{ m In}$	(5^{+})	$0.54 \mathrm{\ s}$
$^{131}{ m In}$	$(9/2^{+})$	$0.28 \mathrm{\ s}$
$^{131m_1}\mathrm{In}$	$(1/2^{-})$	$0.35 \mathrm{\ s}$
\sim 131 m_2 In	$(21/2^{+})$	0.32 s
$^{132}\mathrm{In}$	(7-)	$0.20 \mathrm{\ s}$
133,133m In	$(9/2^{+}, 1/2^{-})$	165 ms
\sim 134 In	$(4^- \text{ to } 7^-)$	138 ms

Laser spectroscopy \blacksquare I , $\triangle < r^2 >$, μ , Q

Nuclear force

- Phenomenology
- Chiral effective field theory

Many-body methods

- ➤ Ab-initio
- > Shell-model
- ➤ Mean-field, DFT...

Electro-weak currents

- ➤ Effective neutron/proton charges
- Microscopic description of effective operators

- √ 100In: key physics case for our understanding of nuclear structure around N=Z=50
 and the development of inter-nucleon interactions and many-body methods
- ✓ *I=9/2* states: Evolution of single-particle/collectivity approaching N=Z=50 and N=82
- ✓ *I=1/2* states: Understating of higher order configuration mixing? Electro-weak currents in the M1 operator?
- √ High-spin isomers: Role of proton-neutron interaction and like-nucleon pairing

Isotope	I (Tentative)	Half life
100In	$(6^+, 7^+)$	$7.0 \mathrm{\ s}$
$^{101}{ m In}$	$(9/2^+)$	15 s
$^{102}\mathrm{In}$	(6^{+})	$22 \mathrm{s}$
$^{103}\mathrm{In}$	$(9/2^+)$	65 s
$^{103m}\mathrm{In}$	$(1/2^{-})$	34 s
$^{104m}{ m In}$	(3^{+})	$15.7 \mathrm{\ s}$
$^{105m}{ m In}$	$(1/2^{-})$	48 s
$^{106m}{ m In}$	(2^{+})	$5.2 \mathrm{m}$
$^{107m}{ m In}$	$1/2^{-}$	$50.4 \mathrm{\ s}$
$^{109m_1}\mathrm{In}$	$1/2^{-}$	$1.34~\mathrm{m}$
$^{109m_2}{ m In}$	$(19/2^{-})$	$0.21 \mathrm{\ s}$
$^{111m}{ m In}$	$(1/2^{-})$	$7.7 \mathrm{m}$
$^{118m}{ m In}$	(1+)	$5.0 \mathrm{\ s}$
$^{120m}{ m In}$	(1^{+})	$3.1 \mathrm{\ s}$
$^{122m}{ m In}$	(1+)	$1.5 \mathrm{\ s}$
$^{112-122}{ m In}$	_	>1 s
^{112–122} In	_	>1 s
$^{124m}{ m In}$	(1^{+})	$3.1 \mathrm{\ s}$
$^{127m_1}\mathrm{In}$	$(1/2^{-})$	$3.7 \mathrm{\ s}$
$^{127m_2}\mathrm{In}$	(21^{+})	$1.0 \mathrm{\ s}$
$^{128}\mathrm{In}$	(3^{+})	$0.84 \mathrm{\ s}$
$^{128m}{ m In}$	(8^{-})	$0.72 \mathrm{\ s}$
$^{129}\mathrm{In}$	$(9/2^+)$	$0.61 \mathrm{\ s}$
$^{129m_1}{ m In}$	$(1/2^{-})$	$1.23 \mathrm{\ s}$
$^{129m_2}{ m In}$	$(23/2^{-})$	$0.67 \mathrm{\ s}$
$^{130}\mathrm{In}$	(1^{-})	$0.29 \mathrm{\ s}$
$^{130m_1}{ m In}$	(10^{-})	$0.54 \mathrm{\ s}$
$^{130m_2}{ m In}$	(5^{+})	$0.54 \mathrm{\ s}$
$^{131}{ m In}$	$(9/2^{+})$	$0.28 \mathrm{\ s}$
$^{131m_1}\mathrm{In}$	$(1/2^{-})$	$0.35 \mathrm{\ s}$
$^{131m_2}\mathrm{In}$	$(21/2^{+})$	$0.32 \mathrm{\ s}$
$^{132}\mathrm{In}$	(7^{-})	$0.20 \mathrm{\ s}$
133,133m In	$(9/2^+, 1/2^-)$	$165~\mathrm{ms}$
$^{134}\mathrm{In}$	$(4^- \text{ to } 7^-)$	$138~\mathrm{ms}$

Laser spectroscopy \blacksquare I , $\triangle < r^2 >$, μ , Q

Nuclear force

- ➤ Phenomenology
- Chiral effective field theory

Many-body methods

- > Ab-initio
- > Shell-model
- ➤ Mean-field, DFT...

Electro-weak currents

- Effective neutron/proton charges
- Microscopic description of effective operators

Indium isotopes offer a unique insight to understand the structure around N=Z=50 and N=82

- √ 100In: key physics case for our understanding of nuclear structure around N=Z=50
 and the development of inter-nucleon interactions and many-body methods
- ✓ *I=9/2* states: Evolution of single-particle/collectivity approaching N=Z=50 and N=82
- √ I=1/2 states: Understating of higher order configuration mixing?

 Electro-weak currents in the M1 operator?
- √ High-spin isomers: Role of proton-neutron interaction and like-nucleon pairing

Feasibility:

- ✓ Production of exotic indium isotopes is highly favored at ISOLDE RILIS schemes successfully tested
- ✓ Atomic schemes are ideal for the CRIS technique lonizations schemes already tested "Simple" two-photon ionization

Isotope	I (Tentative)	Half life
100In	$(6^+, 7^+)$	$7.0 \mathrm{\ s}$
$^{101}{ m In}$	$(9/2^{+})$	15 s
$^{102}{ m In}$	(6^{+})	$22 \mathrm{s}$
$^{103}\mathrm{In}$	$(9/2^+)$	$65 \mathrm{\ s}$
$^{103m}\mathrm{In}$	$(1/2^{-})$	$34 \mathrm{\ s}$
$^{104m}{ m In}$	(3^{+})	$15.7 \mathrm{\ s}$
$^{105m}{ m In}$	$(1/2^{-})$	$48 \mathrm{\ s}$
$^{106m}{ m In}$	(2^{+})	$5.2 \mathrm{m}$
$^{107m}{ m In}$	$1/2^{-}$	$50.4 \mathrm{\ s}$
$^{109m_1}\mathrm{In}$	$1/2^{-}$	$1.34~\mathrm{m}$
$^{109m_2}{ m In}$	$(19/2^{-})$	$0.21 \mathrm{\ s}$
$^{111m}\mathrm{In}$	$(1/2^{-})$	$7.7~\mathrm{m}$
$^{118m}{ m In}$	(1+)	$5.0 \mathrm{\ s}$
$^{120m}\mathrm{In}$	(1+)	$3.1 \mathrm{\ s}$
$^{122m}\mathrm{In}$	(1+)	$1.5 \mathrm{\ s}$
$^{112-122}{ m In}$	_	$>1 \mathrm{s}$
¹¹²⁻¹²² In	_	>1 s
$^{124m}{ m In}$	(1^{+})	$3.1 \mathrm{\ s}$
$^{127m_1}\mathrm{In}$	$(1/2^{-})$	$3.7 \mathrm{\ s}$
$^{127m_2}\mathrm{In}$	(21^{+})	$1.0 \mathrm{\ s}$
$^{128}\mathrm{In}$	(3^{+})	$0.84 \mathrm{\ s}$
$^{128m}\mathrm{In}$	(8-)	$0.72 \mathrm{\ s}$
$^{129}\mathrm{In}$	$(9/2^+)$	$0.61 \mathrm{\ s}$
$^{129m_1}{ m In}$	$(1/2^{-})$	$1.23 \mathrm{\ s}$
$^{129m_2}{ m In}$	$(23/2^{-})$	$0.67 \mathrm{\ s}$
$^{130}\mathrm{In}$	(1^{-})	$0.29 \mathrm{\ s}$
$^{130m_1}\mathrm{In}$	(10^{-})	$0.54 \mathrm{\ s}$
$^{130m_2}{ m In}$	(5^{+})	$0.54 \mathrm{\ s}$
$^{131}\mathrm{In}$	$(9/2^{+})$	$0.28 \mathrm{\ s}$
$^{131m_1}\mathrm{In}$	$(1/2^{-})$	$0.35 \mathrm{\ s}$
$^{131m_2}{ m In}$	$(21/2^{+})$	$0.32 \mathrm{\ s}$
$^{132}\mathrm{In}$	(7^{-})	$0.20 \mathrm{\ s}$
133,133m In	$(9/2^+, 1/2^-)$	$165~\mathrm{ms}$
$^{134}\mathrm{In}$	$(4^- \text{ to } 7^-)$	$138~\mathrm{ms}$

Laser spectroscopy \blacksquare I , $\triangle < r^2 >$, μ , Q

Nuclear force

- Phenomenology
- Chiral effective field theory

Many-body methods

- > Ab-initio
- > Shell-model
- ➤ Mean-field, DFT...

Electro-weak currents

- Effective neutron/proton charges
- Microscopic description of effective operators

Indium isotopes offer a unique insight to understand the structure around N=Z=50 and N=82

- ✓ ¹⁰⁰In: key physics case for our understanding of nuclear structure around N=Z=50 and the development of inter-nucleon interactions and many-body methods
- ✓ *I=9/2* states: Evolution of single-particle/collectivity approaching N=Z=50 and N=82
- √ I=1/2 states: Understating of higher order configuration mixing?

 Electro-weak currents in the M1 operator?
- √ High-spin isomers: Role of proton-neutron interaction and like-nucleon pairing

Feasibility:

- ✓ Production of exotic indium isotopes is highly favored at ISOLDE RILIS schemes successfully tested
- ✓ Atomic schemes are ideal for the CRIS technique lonizations schemes already tested "Simple" two-photon ionization

Why we have not measured it?

Thank you for your attention!

Acknowledgements

Experiment:

-> CRIS group

Theory:

-> G. Hagen (ORNL)

-> J. Holt (TRIUMF)

Ionization schemes

In I

Population of states after CEC

First off-line CRIS with In

- Ablation source and low resolution
- Up to ~50% neutralization

Counts [arb]

Frequency - 17630.6 (cm-1)

Simulations ¹¹⁵In

Simulations In

VS-IMSRG

- Neither interaction is fully consistent
 - however...
- Saturation properties appear important for finite nuclei

[J. Holt, R. Stroberg. Private communication (2017)]

VS-IMSRG

Isotopic chain with $\hbar\omega=16$, $e_{max}=14$, $E3_{max}=16$

[J. Holt, R. Stroberg. Private communication (2017)]

Structure of the ligthest tin isotopes

Charge radii

Laser spectroscopy
$$\implies I$$
,

Simultaneous reproduction of charge radii and binding energies has been a longstanding challenges for nuclear theory.

Extension to the Sn region is underway! [Hagen et al. In preparation (2017)] [J. Holt. Private commun. (2017)]

- ☐ Ground-state spin are essential observables for our understanding of nuclear structure
- ☐ Charge radii provides a test to inter-nucleon interactions and many-body methods

Electromagnetic moments

$$I$$
 , $\langle r^2
angle$, μ , Q

Ab-initio calculations (QMC)

-> Magnetic moments are highly sensitive: changes up to MEC ~40% for ⁹C

[Pastore et al. PRC 87, 035503 (2013)]

Work in progress to include MEC in medium mass and heavy-nuclei

- [J. Holt. *Private communication* (2017)]
 - [A. Calci and R. Roth.PRC 94, 014322 (2016)]
 - [A. Ekstrom et al. PRL 113, 262504 (2014)]

- ☐ Ground-state spin are essential observables for our understanding of nuclear structure
- ☐ Charge radii provides a test to inter-nucleon interactions and many-body methods
- ☐ Electromagnetic moments are sensitive probes to the role of electro-weak currents

Open questions

O Shell evolution towards N=Z=50?

Correlations across N=Z=50?

- Ordering of shell model orbits?
- O Robustness of N=Z=50 shell closures?
- O Proton-neutron correlations?

Open questions

- O Shell evolution towards N=Z=50?
- Ordering of shell model orbits?
- O Robustness of N=Z=50 shell closures?
- O Proton-neutron correlations?

- Correlations across N=Z=50
- Effective operators? Effective charges and g-factors

Different conclusions on the robustness of N=Z=50

¹⁰⁰Sn core { - LSSM^a e_n = 1.0 e

Isospin-dependent effective charges

e_n>1.0 (e_n<1.0) e below (above) ¹¹⁰Sn

Inconsistent use of effective

charges!

⁸⁸Sr core

Mainly protons across Z=50. Theoretical effective charges. $e_n>0.8$, $e_p>1.6$

[Coraggio et al. PRC 91, 041301(R) (2015)]

erc

Some questions on the effective operators....

- Unusually <u>large</u> effective charges (e_n>2 e) on neutron-deficient around ¹⁰⁰Sn [Lipoglavsek et al. PLB 440, 246 (1998)]
- Unusually <u>small</u> effective charges (e_p<1 e) on neutron-deficient around ¹⁰⁰Cd [Górska et al. PRL 79, 2415 (1997)]
- Effective g factors?
 - -> Efforts to derive microscopically [Brown et al, PRC 71, 044317 (2005)]
 Role of core polarization and meson exchange currents?

Isomer shifts

[Yordanov et al. PRL 116, 032501 (2016)]

-> "Rms charge-radii changes from ground states to isomers of Cd isotopes follow a distinct parabolic dependence as a function of the atomic mass number"

Magnetic properties

Figure taken from Jiang *et a*l, PRC 89, 014320 (2014)