High precision measurement of a_μ^{HLO} with a 150 GeV μ beam on e⁻ target at CERN

G. Abbiendi¹, C.M.Carloni Calame², M. Incagli³, U. Marconi¹, C. Matteuzzi⁴, G. Montagna^{2,5}, C. Patrignani^{1,6}, O. Nicrosini², M. Passera⁷, F. Piccinini², F. Pisani^{1,6}, R. Tenchini³, L. Trentadue^{4,8}, <u>G. Venanzoni</u>⁹

¹INFN, Sezione di Bologna, Bologna, Italy

²INFN, Sezione di Pavia, Pavia, Italy

3INFN, Sezione di Pisa, Pisa, Italy

4INFN, Sezione di Milano Bicocca, Milano, Italy

5Universita' di Pavia, Pavia, Italy

⁶Universita' di Bologna, Bologna, Italy

7INFN, Sezione di Padova, Padova, Italy

⁸Universita' di Parma, Parma, Italy

9INFN, Laboratori Nazionali di Frascati, Frascati, Italy

CERN, 1 March 2017

Outline

- Muon g-2: summary of the present status
- Proposal to compute a_{μ}^{HLO} in the space-like region with $\mu e \rightarrow \mu e$ at CERN
- Progress from September
- Next 2 years plan

Muon g-2: summary of the present status

E821 experiment at BNL has generated enormous interest:

$$a_u^{E821} = 11659208.9(6.3) \times 10^{-10}$$
 (0.54 ppm)

Tantalizing ~3σ deviation with SM (persistent for >10 years):

$$a_{\mu}^{SM} = 11659180.2(4.9) \times 10^{-10} (DHMZ) \qquad \text{M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Eur. Phys. J. C71 (2011)}$$

$$a_{\mu}^{E821} - a_{\mu}^{SM} \sim (28 \pm 8) \times 10^{-10}$$

- Current discrepancy limited by:
 - Experimental uncertainty → New experiments at FNAL and J-PARC x4 accuracy
 - Theoretical uncertainty → limited by hadronic effects

$$a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{HAD} + a_{\mu}^{Weak}$$
Hadronic Vacuum polarization (HLO)
$$a_{\mu}^{HLO} = (692.3 \pm 4.2)10^{-10}$$

au HLO calculation, traditional way: time-like data

$$a_{\mu}^{HLO} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} \sigma_{e^+e^- \to hadr}(s) K(s) ds$$

$$a_{\mu} = (g-2)/2$$

$$K(s) = \int_{0}^{1} dx \frac{x^{2}(1-x)}{x^{2} + (1-x)(s/m^{2})} \sim \frac{1}{s} \qquad \sigma_{e^{+}e^{-} \to hadr}(s) = \frac{4\pi}{s} \operatorname{Im} \Pi_{had}(s)$$

Traditional way: based on precise experimental (time-like) data:

$$a_{\mu}^{HLO}$$
 = (692.3±4.2)10⁻¹⁰ (DHMZ)

- Main contribution in the low energy region (highly fluctuating!)
- Current precision at 0.6% → needs to be reduced by a factor ~2 to be competitive with the new **g-2** experiments

Alternative (space-like) approach:

 $a_{\mu}^{\ \ HLO}$ from a 150 GeV μ beam on e^- target at CERN

$$a_{\mu}^{HLO} = \frac{\alpha}{\pi} \int_{0}^{1} (1-x)\Delta \alpha_{had} \left(-\frac{x^{2}}{1-x}m_{\mu}^{2}\right) dx$$

$$\alpha(t)$$

$$x = \frac{t}{2m_{\mu}^{2}} (1 - \sqrt{1 - \frac{4m_{\mu}^{2}}{t}}); \quad \text{(0 \le x < 1)};$$

- Measure $\Delta\alpha_{had}(t)$ through the elastic scattering $\mu e \rightarrow \mu e$; $t=q^2=-2m_e E_e < 0$
- Simple kinematics (2 body process) allows to span the region o<-t<0.143 GeV² (o<x<0.93); 87% of total a_µ^{HLO} (the rest can be computed by pQCD/time-like data)
- $t=q^2$ from angular measurement of e/μ
- Highly boosted system gives access to all angles (t) in the cms region

Alternative (space-like) approach:

 $a_{\mu}^{\ \ HLO}$ from a 150 GeV μ beam on e^- target at CERN

$$a_{\mu}^{HLO} = \frac{\alpha}{\pi} \int_{0}^{1} (1 - x) \Delta \alpha_{had} \left(-\frac{x^{2}}{1 - x} m_{\mu}^{2} \right) dx$$

$$\alpha(t)$$

$$e$$

$$e$$

$$x = \frac{t}{2m_{\mu}^{2}} (1 - \sqrt{1 - \frac{4m_{\mu}^{2}}{t}}); \quad (0 \le x < 1);$$

- Measure $\Delta\alpha_{had}(t)$ through the elastic scattering $\mu e \rightarrow \mu e$; $t=q^2=-2m_e E_e < 0$
- Simple kinematics (2 body process) allows to span the region o<-t<0.143 GeV² (o<x<0.93); 87% of total a_μ^{HLO} (the rest can be computed by pQCD/time-like data)
- $t=q^2$ from angular measurement of e/μ
- Highly boosted system gives access to all angles (t) in the cms region

Detector considerations

- Modular apparatus: 20 layers of 3 cm Be (target), each coupled to 1 m distant Si (0.3 mm) planes. It provides a 0.02 mrad resolution on the scattering angle
- Angular measurement: signal region (10⁻⁵< $\Delta\alpha_{\rm had}$ (t)<10⁻³) $\theta_{\rm e}$ <20mrad; normalization region ($\Delta\alpha_{\rm had}$ (t)<10⁻⁵) $\theta_{\rm e}$ >20mrad
- Needs to keep the systematic errors at 10⁻⁵ (main effect is the multiple scattering, see later)
- Possible necessity of a ECAL and µ Detector located downstream to solve PID ambiguity below 5 mrad. Above that, angular measurement gives correct PID
- 0.3% stat error can be achieved on a_{μ}^{HLO} in 2 years of data taking with <1>~1.3x10⁷ μ /s \rightarrow 2x10¹² signal events/year

Progress from September

- Focus on Multiple Scattering (MSC) (first studies):
 - effects due to 1% uncertainty MSC (gaussian) model
 - Understanding non-gaussian tails by GEANT

- Understanding the present limitations and necessary steps towards the goal of 10ppm
- Proposed workshop at MAINZ (2018)

Paper "Measuring the leading hadronic contribution to the muon g-2 via μe scattering" G. Abbiendi et al., arXiv:1609.08987, accepted for publ. EPJC (DOI:10.1140/epjc/s10052-017-4633-z)

MSC studies: Gaussian model with 1%

uncertainty

$$g_0(\theta_R - \theta_T) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(\theta_R - \theta_T)^2}{2\sigma^2}\right]$$

$$\sigma = \frac{13.6}{\beta pc} z \sqrt{\frac{d}{X_0}} \left[1 + 0.038 \ln \left(\frac{d}{X_0} \right) \right]$$

Beryllium Target d = 3 cm

$$f(\vartheta_T) = \frac{dN(e\mu \to e\mu)}{d\vartheta_T}$$

$$g_0(\theta_R - \theta_T) \sim N(\theta_T, \sigma)$$

$$g(\theta_R - \theta_T) \sim N(\theta_T, \sigma')$$

 $\sigma' = N(\sigma, 0.01\sigma)$

 $\overline{\boldsymbol{\theta_{e}^{\circ}}}$ [mrad]

Non gaussian tail effects

- First studies with GEANT: Non gaussian tails ~3%:
 - 1 GeV electron tails: 3 cm Multiple Scattering:
 - computed theta0 (Highland formula) = 3.593 mrad
 - central part defined as +- 10.78 mrad (3σ);

Tail ratio = 3.002 %

Work in progress to study tail effects on the angular distribution

Test Beam

Basic setup from IC:

5 Si planes, 2 before and 3 after the target, 3.8x3.8 cm2 as is it the setup achieves 5.2 μrad, limited by the MS in the Si

Goal of the TB

- Measure the angle of e- and muons
- Isolate the signal (elastic scattering) events
- plot 2D θ_{μ} vs θ_{e} (in the allowed region)
- Compare with simulation

Preliminary: O(104) μ e evts expected within θ <30 mrad assuming 10kHz μ

Activity on the theory side

- 1. QED NLO corrections. Easy.
- Resummation of dominant corrections up to all orders, matched with NLO corrections. Non-trivial issue: mass effects in this case are important
- 3. NNLO corrections: some classes of NNLO re-usable from existing Bhabha calculations, some new due to different mass scales (\mathbf{m}_{μ} and \mathbf{m}_{e}). In any case, NNLO must be matched with 1. and 2. [references: Eur. Phys. J. C 66 (2010) 585 and references therein]
- 4. Development of dedicated MC tools including all the above ingredients
- 5. Detailed study of all the mentioned corrections, comparison among independent calculations, estimate of further-missing higher-order corrections
- 6. Planned theory workshop this year in Padova (and one proposed next year in Mainz)

Plans (next 2 years) and Conclusion

- Focus on Multiple Scattering (MSC) effects:
 - How non gaussian tails affects our measurement and can be monitored/ controlled (2D plots and acoplanarity)
- Background subtraction and modeling in GEANT
- Optimization of target/detector and full detail simulation
- Test beam(s) and proto-experiment with a realistic module
- NNLO MC generation of µe process
- Design possible implementation in M2
- Consolidate the collaboration and write a TDR

Spare