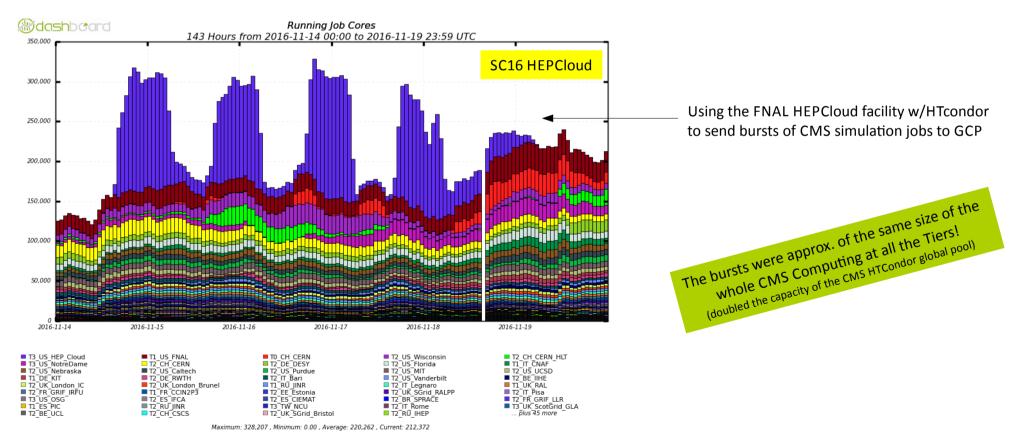


CMS: Accounting opportunistic resources in APEL

J. Flix

w/feedback from: C. Grandi, O. Gutsche, D. Hufnagel, A. Pérez-Calero Yzquierdo

jflix@pic.es / WLCG Accounting TF meeting (9th Feb. 2017)



CMS Opportunistic resource usage

- Exploitation of HPC centres and commercial clouds has been a priority in the CMS Computing Program for at least a couple of years
 - → Transparent use of NERSC resources @US (Edison, Cori-1, Cori-2)
 - → AWS @US, Google Cloud Platform @US, Aruba @IT, ongoing Microsoft Azure

https://cloudplatform.googleblog.com/2016/11/Google-Cloud-HEPCloud-and-probing-the-nature-of-Nature.html

CMS Opportunistic resource usage

- Exploiting HPCs/Clouds offers the ability to flexibly absorb peaks in processing requests without acquiring in-house resources
- It is generally acknowledged that the exploitation of opportunistic resources cannot in general be part of the current WLCG pledged resources mechanism
 - → But accepted that these resources will be part of the overall picture in the future, although there is no well defined model across LHC experiments yet
 - → The current efforts to plug CMS workflows into HPCs and commercial clouds is not negligible for the moment (weeks or months to fully integrate a system)
- We should have mechanisms to account for the work done in these facilities
 - → CMS is adopting internal T3 Country Opportunistic

Tier 0	T2 CH CERN	T2_IT_Bari	T2_UA_KIPT	T3_CH_PSI	T3_KR_KISTI	T3_US_Brown	T3_US_Princeton_ICSE
TO CH CERN	T2 CH CERN AI	T2_IT_Legnaro	T2 UK London Brunel	★T3_CH_Volunteer	T3_KR_KNU	T3 US Colorado	T3 US PuertoRico
	T2 CH CERN HLT	T2 IT Pisa	T2 UK London IC	T3_CN_PKU	T3 KR UOS	T3 US Cornell	T3 US Rice
Tier 1	T2 CH CERN Wigner	T2 IT Rome	T2 UK SGrid Bristol	T3 CO Uniandes	T3 MX Cinvestav	T3 US FIT	T3 US Rutgers
T1_DE_KIT	T2 CH CSCS	T2 KR KNU	T2 UK SGrid RALPP	T3 ES Oviedo	T3 NZ UOA	T3 US FIU	T3 US SDSC
T1_ES_PIC	T2 CH CSCS HPC	T2 MY SIFIR	T2 US Caltech	T3 FR IPNL	T3 RU FIAN	T3 US FNALLPC	T3 US TACC
T1_FR_CCIN2P3	T2 CN Beijing	T2 MY UPM BIRUNI	T2 US Florida	T3 GR Demokritos	T3 RU MEPhI	T3 US FSU	T3 US TAMU
T1_IT_CNAF	T2 DE DESY	T2 PK NCP	T2 US MIT	T3 GR IASA	T3 TH CHULA	★ T3 US HEPCloud	T3 US TTU
T1_RU_JINR	T2 DE RWTH	T2 PL Swierk	T2 US Nebraska	T3 HR IRB	T3 TW NCU	T3 US JHU	T3 US UB
T1_RU_JINR_Disk	T2 EE Estonia	T2 PL Warsaw	T2 US Purdue	T3 HU Debrecen	T3 TW NTU HEP	T3 US Kansas	T3 US UCD
T1_UK_RAL	T2 ES CIEMAT	T2 PT NCG Lisbon	T2 US UCSD	T3 IN PUHEP	★ T3 UK GridPP Cloud	T3 US MIT	T3 US UCR
T1_UK_RAL_Disk	T2 ES IFCA	T2 RU IHEP	T2 US Vanderbilt	★ T3 IN TIFRCloud	T3 UK London QMUL	T3 US Minnesota	T3 US UCSB
T1_US_FNAL	T2 FI HIP	T2 RU INR	T2 US Wisconsin	T3 IN VBU	T3 UK London RHUL	* T3 US NERSC	T3 US Ulowa
T1_US_FNAL_Disk	T2 FR CCIN2P3	T2 RU ITEP	Tion 2	T3 IR IPM	T3 UK London UCL	T3 US NEU	T3 US UMD
Tier 2	T2 FR GRIF IRFU	T2 RU JINR	Tier 3	T3 IT Bologna	T3 UK SGrid Oxford	T3 US NU	T3 US UMiss
	T2 FR GRIF LLR	T2 RU PNPI	T3 BG UNI SOFIA	T3 IT Firenze	T3 UK ScotGrid ECDF	T3 US NotreDame	T3 US UTENN
T2 AT Vienna	T2 FR IPHC	T2 RU SINP	T3 BY NCPHEP	T3 IT MIB	T3 UK ScotGrid GLA	* T3 US OSG	T3 US UVA
T2 BE IIHE	T2 GR Ioannina	T2 TH CUNSTDA	T3 CH CERN CAF	*T3 IT Opportunistic	T3 US ANL	T3 US OSU	★ T3 US Vanderbilt EC2
T2 BE UCL	T2 HU Budapest	T2 TR METU	* T3_CH_CERN_HelixNebu	ال <u>ا la</u> T3 IT Perugia	T3 US BU	T3 US Omaha	T3 US Wisconsin
T2 BR SPRACE	T2 IN TIFR	T2 TW NCHC	* T3_CH_CERN_OpenDate	T3 IT Trieste	T3 US Baylor	T3 US Princeton ARM	
T2_BR_UERJ							Might have missed to mark some!

Opp. resources be accounted in APEL?

Whether your experiment would be interested that opportunistic resources are accounted in APEL?

 \rightarrow Yes

If yes, what are possible scenarios?

→ The easiest, accounted as if from an existing CMS site (e.g. site extension) or to a "name" known to CMS (e.g. T3_Country_Opportunistic)

Whether these opportunistic resources are already accounted in the experiment-specific systems?

→ through the dashboard and the HTCondor global pool, atm ["run/wall time", "running job cores", "# events"...]

How/whether benchmarking of such resources performed?

- → Not implemented/available yet
- → benchmark * time, storing the CPUtime spent and the benchmark separately → this would allows for adopting another benchmark if it becomes available, hopefully a better one
- → integrating a (fast) benchmark with the jobs, at which point we probably have to give up precision
- → We should have a way to store these values in the experiment-specific system ("dashboard")

How these resources are described regarding topology?

 \rightarrow See answer to 2nd question

Would it be possible to retrieve accounting data for the opportunistic resources from the experiment-specific systems via APIs?

→ We assume that the information available in the dashboard can be retrieved via its own APIs and sent to APEL. To be verified if what is available is enough for APEL