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1 Statistical Analysis of hemisphere algorithm performance

1.1 Overview of the statistical framework

1.1.1 The main goal

The main goal of the statistical studies is to check if the hemisphere algorithm performs according
to its prior expectations. The mixed events produced from the original data by the algorithm are
going to be tested whether it could have been generated from the background distribution or if it
differs significantly. To do so a proper statistical test for equality of distributions for two samples
has to be applied.

Let X1,X2, . . . ,Xn1
and Y1,Y2, . . . ,Yn2

be d-variate random samples from their respective
common densities fX and fY . We need to employ the following test: consider the null hypothesis
that their respective multivariate distributions fX(x) and fY (x) are equal, that is

H0 : fX(x) = fY (x)

for all x that are in the domain of variables against the general alternative

H1 : fX(x) 6= fY (x).

1.1.2 Summary of statistical tools

The issue of testing two samples for equal distributions is quite common for statistical inference
and many solutions have been proposed. They differ by their assumptions, tested hypothesis or
their power. In followings we present the standard statistical tools that some would want to use
for the settings.

The Kolmogorov-Smirnov test [4] could be used for the mentioned setting if our data at hand
were unidimensional. The Kolmogorov-Smirnov statistic is computed based on a distance between
the empirical cumulative distribution functions of the samples and for this reason it is not restricted
only to location or scale changes. This test has several attractive features, among them is the
robustness on outliers, as it is only sensitive to the bulk of the density function. On the other hand
this test has small power in comparison to others [4].

A more powerful alternative is the Wilcoxon rank sum test [4]. This is a common nonparametric
univariate two-sample test, for which the null hypothesis is that the distributions of both samples
differ by a location shift µ = 0 and the alternative is that they differ by some other location shift
µ 6= 0 (for the two-sided case). For the considered data this test is not a proper choice as it is also
univariate and tests different hypothesis (no change in location in general is not equal to equality
of distributions).

The Multivariate Analysis of Variance (MANOVA) [5] could be used for our issue as it is a
multivariate test. However the test is oriented on the difference in samples means and therefore
it does not satisfy the hypothesis that are meant to be tested. Additionally the assumptions for
MANOVA test is that the feature variables have normal marginal distributions that is not the
case for our data at hand. However asymptotically (for big number of observations) from Cental
Limit Theorem the distribution of means is approximately normal and MANOVA is reported to
be robust to non-normal datasets [?].

As described above the standard statistical tools are not proper for our purpose. For this
reason we had to choose more sophisticated method, that is multivariate and designed for the
described hypotheses. The recent test proposed by Duong et al (2012) - the kernel density based
global two-sample comparison test (KDE test) [2] - has no assumptions on the data distribution, is
multivariate and tests the right hypotheses for our purpose. It relies on a kernel density estimations
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of both samples densities f1 and f2. The density of each sample is estimated as

f̂1(x;H1) =
1

n1

n1∑
i=1

KH1
(x−Xi)

and

f̂2(x;H2) =
1

n2

n2∑
j=1

KH2
(x−Yj)

where K is a kernel function and Hi the chosen bandwidth matrix for i = 1, 2. The integrated
squared error is a measure of discrepancy between the density functions

T =

∫
[fX(x)− fY (x)]

2
dx

where integration is taken over the appropriate Euclidean space and has been well studied for the
optimal selection of smoothing parameters. Note that T could be also written in the following
form

T = ψ1,1 + ψ2,2 − ψ1,2 − ψ2,1

where ψk,l =
∫
fk(x)fl(x)dx. Therefore the discrepancy T could be estimated as

T̂ = ψ̂1,1 + ψ̂2,2 − ψ̂1,2 − ψ̂2,1

where

ψ̂1,1 =
1

n21

n1∑
i=1

n1∑
j=1

KH1 (Xi −Xj) ,

ψ̂1,2 =
1

n1n2

n1∑
i=1

n2∑
j=1

KH1
(Xi −Yj) ,

ψ̂2,1 =
1

n1n2

n1∑
i=1

n2∑
j=1

KH2 (Xi −Yj) ,

ψ̂2,2 =
1

n22

n2∑
i=1

n2∑
j=1

KH2
(Yi −Yj) .

It has been shown that the T̂ statistics is asymptotically normal. This property gives it a great
advantage over other multivariate tests that employ bootstrap in order to reconstruct the test
statistic. One of the disadvantage of the test is that in highly-dimensional sets the kernel smoothing
could be inaccurate, so it is recommended not to use it in dimensions higher than 6 [1].

1.1.3 A permutation-based approach

Let T be the set of the feature variables from the data and in our case it is highly dimensional,
hence even KDE test cannot be used due to the curse of dimensionality. The idea is to performe
the test on subsets of the feature variables. We take P subsets of T and let us denote them as
T1, ...,TP . For each Ti the chosen test is performed between two tested samples. We obtain a
vector of test statistics Z = [Z1, Z2, . . . , ZP ] and their respective p-values [p1, p2, . . . , pP ] .

The methods of inference from combination of multiple p-values have been well described in
the statistical literature [3]. In practice a particular function (combinant) of p-values is computed
which distribution is known. Consequently based on combinant distribution the single p-value is
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obtained. In this report we consider two combinants: the Fisher given by the following formula
pFi = −

∑P
j=1 log(pij) while min-p pMi = −minj=1,2,...,P pij .

The distributions for the combinants are only known if the p-values obtained in the multiple
tests are independent. Unfortunately for our case this assumption is not met as the subsets Ti
could have non null intersect or even the single feature variable are dependent on each others. For
this reason we need to work out a permutation framework in which the empirical distributions of
combinants values are computed and consequently a proper final p-value obtained.

The permutation framework is performed as follows. The dataset permutation is done by
randomly exchanging rows of the given original samples. For the new samples constructed in that
way the tests are performed for all the P subsets of the feature space. The procedure of permuting
rows of the original samples is repeated B times. Consequently for the chosen test the hypothesis
is tested multiple times for all combinations of B permutations of the samples and P subsets of
feature space. The collected test statistics could be saved in the (B + 1)× P matrix of as shown
below:

Variables T1 T2 . . . TP

Original data Z11 Z12 . . . Z1P

Permuted data 1 Z21 Z22 . . . Z2P

Permuted data 2 Z31 Z32 . . . Z3P

...
...

...
. . .

...
Permuted data B Z(B+1)1 Z(B+1)2 . . . Z(B+1)P

To combine the results for each test statistic Zij the p-value is calculated by columns as

pij =
#{Zij≤Z·j}

B+1 (that is the percentile of the variables in columns). From the matrix of p-values
the combined p-value is computed by rows. We consider two methods for such the combination:
Fisher and min-p. The Fisher combinant is computed according to the following formula pFi =

−
∑P

j=1 log(pij) while min-p pMi = −minj=1,2,...,P pij . Note that we obtain B+1 combined p-values
for each row (for each permutation of samples) as presented below.

T1 T2 . . . TP

p11 p12 . . . p1P → pF1
p21 p22 . . . p2P → pF2
p31 p32 . . . p3P → pF3
...

...
. . .

...
...

p(B+1)1 p(B+1)2 . . . p(B+1)P → pFB+1

As mentioned previously either Fisher or min-p combinant of p-values of original (non-permuted)
samples has an unknown distribution due to the dependence of the feature variables. However
having additional B p-values from tests on permuted samples we obtain its empirical distribution
under null hypothesis of equal samples distribution. Therefore the final, single p-value of considered
permutation framework for combining multiple p-values is given as a percentile of combinants p-

values, that is for pF =
#{pF

1 ≤p
F
i }

B+1 and the min-p pM =
#{pM

1 ≤p
M
i }

B+1 ..

1.2 Performance of the statistical test

1.2.1 First-type error analysis

For first we want to verify the three described tests (Wilcoxon, MANOVA and KDE) if they all
control the first type error (the test wrongly rejects H0 too often in respect to given significance
level α). To do so at random we extract observations X1,X2, . . . ,Xn1

and Y1,Y2, . . . ,Yn2
from

the sample of background data, so that the both sets are sampled from the common density.
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Given the two samples we perform the three tests and obtain their respective p-values for the
tested hypothesis. This procedure is repeated S times in order to obtain distribution of p-values
for each test. Because we sample under null hypothesis the distribution should be uniform. In
order to compare these distributions we plot the empirical cumulative distribution functions of
p-values. The MANOVA test assumes normality of marginal distributions however for the large
number of observations it could be used with success for a non-normal settings. Due to central
limit theorem the marginal distributions of the feature means are normally distributed even if
the data is skewed. Under the null hypothesis we performed MANOVA test a thousand times
for different random subsamples of size 30000 each. Based on the obtained p-values a respective
empirical cumulative distribution function is drawn and presented on a figure 1.

Figure 1: The empirical cumulative distribution function of p-values for the MANOVA tests under
H0 for S = 1000 sub-sampling (black line) and the uniform cdf (blue line).

As the Wilcoxon test is uniform we could perform 20 consequent tests for each feature variable
of the data. In order to properly cumulate the 20 obtained p-values we use the permutation
framework. We choose P=20 that correspond to each variable of the data and number of samples
permutation B=500. Such the approach returns one single p-value for the tested hypothesis for
the given two samples. In order to obtain distribution of p-values we perform 100 times the
sub-sampling of tested sets with sizes 2000 each.
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Figure 2: The empirical cumulative distribution function of p-values for Wilcoxon tests under H0

for S = 100 sub-sampling for Fisher and min-p combinant (green and black line respectively) and
the uniform cdf (blue line).

As mentioned previously the KDE test is multivariate and therefore, in respect to Wilcoxon
permutation test, a small adjustment for permutation framework has to be applied. Given samples
of size 2000 each we perform KDE test only in the three dimensional space. For higher dimension
the density estimation could not be as accurate for the size of the samples and an increase of the
size increases computation time quadratically. Therefore we take at random P = 40 sets of three
variables from the all possible choices of 3 out of 20 feature variables. Through the permutation
framework schema the dependences between feature variables is sustained. The obtained cdf of
KDE permutation test is resented on a figure 3.
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Figure 3: The empirical cdf of p-values under H0 for Fisher and min-p combinant (green and black
line respectively) for permutation of KDE tests for S = 30 (remark B only 250 should be rerun
also with higher S).

1.2.2 Power analysis

In order to analyze the performance of the studied algorithm we need to have a statistical test
that not only controls the fist type error but also is powerful, that is it often rejects the null
hypothesis when the samples are from different distributions. Certainly the power of test depends
on the underlying difference of the samples distribution as well as on test specification (if a test is
powerful for difference in scale of tested samples it could be easily outperformed if samples differ
by location).

For the analyzed issue we only have the observations of Monte Carlo simulations of the back-
ground distribution and the second set of generated observations from the signal which marginal
distribution. The datasets that are collected in practice by the detector are believed to be a mixture
of both mentioned distributions in which the fraction of observations from the signal distribution
is small. Therefore we want to study the power of the tests as a function of signal fraction in the
whole mixture.

We consider two d-variate samples X1,X2, . . . ,Xn1
and Y1,Y2, . . . ,Yn2

, the first one is taken
purely from the background dataset while the second one consist in f% of the simulated signal
observation and 100− f% of the background. Therefore, in contrast to null distribution analysis,
the two generated samples are taken from different distributions where their difference increase for
higher values of signal fraction f. Consequently under the alternative hypothesis we generate such
the samples and compute how often the null is rejected (that is the power of the test).
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Figure 4: The power of the MANOVA test given different signal fractions of one of the samples
based on a 100 samplings. (HERE THERE IS GING TO BE A COMPARISON BETWEEN THE
3 TESTS)

1.3 Application of the statistical test for the hemisphere algorithm

1.3.1 Test of equal distributions of the background and the hemisphere mixed events.

As the power and the first type error control for the three tests has been checked, consequently
the tests could be applied to the dataset with hemisphere mixed events. In this way it would be
checked if the distribution of the hemisphere mixed events sustains unchanged in respect to its
parent background distribution.

1.3.2 Test of equal distributions of the background and the real data hemisphere
mixed events.

As the final step it has to be analyzed if the possible signal observations in the data are smeared
out by the usage of the hemisphere algorithm. Therefore the mixture of the background and small
fraction of signal events is given as the input of the algorithm. From this data the hemisphere mixed
events are produced and their distribution is tested against the pure background distribution.
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1.5 Appendix

In order to have a better view into the data we present the marginal distributions of some chosen
feature variables. The distributions are presented for the simulated background observations (red
color) and their respective hemisphere mixed events (blue) on figures 6 and ??. As by eye the
presented densities are alike we also present their ratio as a function of their domain. If the
distribution were equal, the densities ratio should oscillate about 0.5 without any systematic peaks.
The disproportion of background versus mixed events for the lowest value of the domain is caused
due to the issues of the kernel density estimation on the boundaries.
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Figure 5: The kernel density estimation function of marginal distribution for chosen feature kine-
matic variables for background and hemisphere mixed observations presented on the left column.
On the right the ratio of respective densities as a function of their domain.
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Figure 6: The kernel density estimation function of marginal distribution for chosen feature angular
variables for background and hemisphere mixed observations presented on the left column. On the
right the ratio of respective densities as a function of their domain.
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