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The Large Hadron Collider
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The LHCb experiment
› Specialized “b-physics” experiment 

▪ Helps us understand what happened after big bang that 
allowed matter to survive (leading to… us here)
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LHC long term planning
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LHC long term planning
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LHCb 
upgrade



HTCC in a nutshell
• High-Throughput Computing Collaboration:  
 
 

• Apply upcoming Intel technologies in an “Online” computing 
context at the Large Hadron Collider 

• Data Acquisition (DAQ) and event-building 
• Accelerator-assisted decision-taking on collected data 

• Use LHCb upgrade as an example, but applicable and useful for 
other experiments too!
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LHCb TDAQ Architecture Using Intel
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detector front-end electronics

event-filter 
farm

event builder 
network

event-builder nodes

Intel® Xeon® 
Intel® Xeon® + FPGA w/  
     Intel ® Omni-Path 
Intel® Intel® Xeon Phi™ &      
Intel® Omni-Path

Intel® Omni-Path

Intel® Omni-Path and/or 
100 GbE

Intel® Xeon® 
Intel Xeon® + FPGA  
Intel® Xeon Phi™ 
3D XPoint™

500x

8800 x 
Versatile Link



The data-acquisition network
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DAQ Challenges
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• Transport multiple Terabit/s reliably and cost-effectively 
• 500 port full duplex, full bi-sectional bandwidth network, aiming at 

80% sustained link-load @ >= 100 Gbit/s / link 
• Integrate the network closely  

and efficiently with compute  
resources  

• Multiple network technologies  
should seamlessly co-exist in  
the same integrated fabric
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How to evaluate a 40 Tbit/s interconnect 
(without buying one)
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• Many high-bandwidth, low-latency interconnects exist already! 
specifically in HPC systems (see Top500) 

• DAQPIPE is a highly portable software package for emulating data-
acquisition systems on an HPC site 

• Supports multiple protocols and network technologies 
• Allows one to scan for many relevant  

parameters (message size/rate,  
buffers, push/pull, scheduling etc…)



Data processing and filtering 
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How to deal with 40 Tbit/s of incoming data

› Not all particle collision data coming from the detector is relevant. 
▪ In fact we throw away most of the data! 

› How do we choose which data to keep and which to discard?
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Accelerating the software filtering
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• 5 million lines of C++ code 
• Three Intel technologies: 

• Intel® Xeon®: Baseline; code offers room for a lot of optimizations to 
take advantage of modern Intel hardware platforms! 

• Intel Xeon® + FPGA: Code contains many computationally 
expensive algorithms well suited for FPGA! 

• Intel® Xeon Phi™: Much of incoming data is independent. Massive 
parallelization is possible!



New (and old) challenges on FPGA
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• Sophisticated algorithms need more time, bigger FPGAs, more data 
• Long-term maintenance issues with custom hardware and low-level 

firmware 
• Upgrades usually mean replacing all the hardware  

• Exact reproducibility of results without the custom hardware challenging 
and/or computationally intensive 

• HTCC question: Can we build something similar with the integrated FPGA 
on Xeon® Platform? 

+
Xeon                 Stratix V FPGA



Xeon-FPGA for filtering
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• We developed one important prototype application (RICH PID) to 
understand the advantages and drawbacks of Xeon-FPGA 

• Achieved a significant speedup (up to x28) 
• Fast development time of code thanks to convenient tools and 

languages (OpenCL) 
• Low power consumption compared with e.g. GPGPUs 

• Conclusion: Using FPGA technology  
could allow us to use more precise  
algorithms more often for  
higher-quality data filtering!



HTCC results
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• Scaling results for Omni-Path look very promising:
• 15 TB/s aggregate bandwidth on 512 nodes!
• Open questions remain on how Omni-Path compares with Infiniband EDR

• Great results on Xeon-FPGA StratixV for RICH  particle ID prototype code
• x35 (x26 using OpenCL implementation) In near future: Xeon + on package Arria10 

FPGA.
• How should the filter farm be designed to take advantage of Xeon-FPGA nodes 

while keeping purchase costs manageable?
• KNL so far looks like a strong alternative to Xeon. 

• When using AVX512 & effective multi-threading speedups of more than x6 have 
been shown.

• How far can HLT software scale on KNL and how can the KNL memory model be 
effectively used?



Future directions
Openlab VI
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Datacenter needs for ALICE and LHCb
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• New datacenter to be constructed (2 MW) 
• Require about 2500 4000 U 
• Needs to house the computing infrastructure for the software filtering: 

• Network 
• Storage 
• Compute: Xeon + Accelerators (FPGA, GPGPU, KNL?) 

• CERN investigates two options: local datacenters close to the 
experiments or large central DC, requiring long-distance (< 10 km) data-
transport 



Persistency & Non-volatile memory
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• Quick turn-around of large, massive applications is crucial for efficient 
usage of Online farms 

• A combination of Operating System Level check-pointing and non-volatile 
memory could be interesting  needs investigations 

• Related: some applications could profit from massive amount of memory 
(time-slice processing in ALICE), to be investigated  

time
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High Efficiency
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• LHC up-time integrated over the year is "only" about 30% 
• Tight integration of off- and online facilities needed.  
• Idle cycles used for analysis, simulation, etc... 



Flexible infrastructure through  
RackScale architecture
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• Ideally could seamlessly run batch-type (simulation, analysis) and (near) real-time 
workloads. 

• easy access to disk-storage 
• Housing of custom I/O cards (PCIe) 
• Flexible amount of accelerators 

• High speed network between (some) servers 
• rack-level and datacenter oriented design?
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Flexible infrastructure through  
RackScale architecture
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• Ideally could seamlessly run batch-type (simulation, analysis) and (near) real-time 
workloads. 

• easy access to disk-storage 
• Housing of custom I/O cards (PCIe) 
• Flexible amount of accelerators 

• High speed network between (some) servers 
• rack-level and datacenter oriented design?
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Thank you!
Who are we: 

CERN openlab High Throughput Computing Collaboration  
Olof Bärring, Niko Neufeld 
Luca Atzori, Omar Awile, Paolo Durante, Christian Färber, Placido Fernandez, 
Jon Machen (Intel), Rainer Schwemmer, Sébastien Valat, Balázs Vőneki
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communication and outreach
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• Other experiments have expressed interest in Xeon+FPGA and Omni-Path.
• Discussions are ongoing on DAQ evolution and offline computing using Omni-Path, 

Xeon+FPGA, and KNL.
• Potential for using Xeon+FPGA to build a new readout unit with simplified custom 

hardware.

• Presentations:
• 09/2016 – CHEP 2016: Acceleration of Cherenkov angle reconstruction with the new Intel Xeon/FPGA compute 

platform for the particle identification in the LHCb Upgrade
• 09/2016 – CHEP 2016: LHCb Kalman Filter cross architectures studies

• 06/2016 - PASC 2016 : Experiments with multi-threaded velopixel track reconstruction
• 06/2016 - Real Time Conference 2016 : Evaluation of 100 Gb/s LAN networks for the LHCb DAQ upgrade.
• 06/2016 - Real Time Conference 2016 : Particle identification on an FPGA accelerated compute platform for the 

LHCb Upgrade.
• 04/2016 - Open Fabric Alliance workshop 2016 : Building a 4 TB/s event building
• 04/2015 - ICHEP 2015 : A first look at 100 Gbps LAN technologies, with an emphasis on future DAQ applications.



Christian Färber,
CERN Software Technology R&D Forum – 21.11.2016 21

Intel® Xeon/FPGA Results 

● Acceleration of factor up to 35 with Intel® Xeon/FPGA

● Theoretical limit of photon pipeline: a factor 64 with 
respect to single Intel® Xeon® thread

● Bottleneck: Data transfer bandwidth to FPGA 

Cherenkov angle reconstruction on FPGA
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• Implementation in Verilog and OpenCL. 
• OpenCL allowed for faster development time (2 weeks vs. 2.5 months) at 

comparable performance • Acceleration of factor up to 35 (26 using 
OpenCL) with Intel® Xeon/FPGA  

• Theoretical limit of photon pipeline: a factor 
64 with respect to single Intel® Xeon® thread  

• Bottleneck: Data transfer bandwidth to FPGA 



The case for QPI
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• StratixV programmed in OpenCL  
• Compared to vectorized E2630v2 (single-thread) 
• Still room for improvement (pipeline  

could do at least 2x more) 

• Currently testing Broadwell+Arria10 
• New interconnect has significantly 

increased bandwidth 
• Doubled ALMs and registers 
• increased DSPs (implementing hardened FP blocks) by a factor 6  

• We expect a further increase of FP performance and ability to implement more 
(and more complex) algorithms.

Interface comparison, Photon processing 
throughput
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A simplified PCI-40 card 
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• Simplified receiver card without an 
FPGA.  

• Use Xeon+FPGA for data processing 

• Currently being discussed with CMS 
and Alice.

MPO
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Xeon Arria10
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Accelerators for the HLT
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• More than 5 MLOCs of C++. Currently under redesign for SIMD and shared-mem 
parallelism. 

• Baseline remains Xeon CPUs 
• New framework uses TBB to dispatch 

algorithms to process events in a  
multi-threaded fashion. 

• Two ways to accelerate algorithms: 
• Offload critical functions to  

FPGA 
• Rewrite most time-consuming  

algorithms in a parallel fashion  
and use Xeon-Phi (Knight’s  
Landing)



TBB for accelerating track-reconstruction
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• Straight-line track reconstruction in the 
velopixel subdetector. 

• Comparing TBB with official 
reconstruction (run in multiple 
instances without  HT) 

• tbbPixel speedup on BDW: 1.88 
• KNL-specific optimizations will likely 

yield better throughput! 
• Speedup and improved reconstruction 

efficiency can be ported into 
production code



SIMD Kalman Filter
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• Kalman Filters are a major contributor to overall HLT execution time 
(~60%). 

• Used throughout the HLT for prediction, filtering and smoothing



SIMD Kalman Filter
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• Well optimized and vectorized code offers > 6x speedup over production code. 
• KNL shows ~2x speedup over 2 socket HSW system.


