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The problem

 Detailed simulation of subatomic particles in detectors, 

essential for data analysis, detector design..

 Complex physics and geometry modeling

 Heavy computation requirements, massively CPU-bound
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More than 50% of WLCG power for simulations

200 Computing centers in 20 countries: > 600k cores

@CERN (20% WLCG): 65k processor cores ; 30PB disk + >35PB tape 

storage 



GeantV – Adapting simulation to modern hardware
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Classical 

simulation
hard to approach 
the full machine 
potential

GeantV

simulation
needs to profit at 
best from all 
processing 
pipelines

• Single event scalar 

transport

• Embarrassing parallelism

• Cache coherence – low

• Vectorization – low (scalar 

auto-vectorization)

• Multi-event vector transport

• Fine grain parallelism

• Cache coherence – high

• Vectorization – high (explicit 

multi-particle interfaces)



GeantV approach
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 Transport particles in vectors 

(“baskets”)

 Filter by geometry volume or 

physics process

 Redesign library and workflow to 

target fine grain parallelism

 Use backends for portability and 

interface abstraction (vector, scalar) 

Aim for a 3x-5x faster code, understand hard limits for 10x



Challenges

 No free lunch: need to keep data gathering 

overheads < vector gains

Geometry
Run-time fraction 

spent in different 

parts of GeantV

24-core dual socket E5-2695 v2 @ 2.40GHz (HSW).
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 X-ray scan of detector volumes

 Trace a grid of virtual rays through geometry

 Simplified geometry emulating a tracker detector 

 Compare GeantV basket approach to

 Classical scalar navigation (ROOT)

 An ideal “vector” case (no basketizing

overheads)

 AVX512 vectorization enforced by API (UME:SIMD 

backend)

 ~100x scalability for the ideal and basket versions

Geometry navigation on KNL
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 High vectorization intensity achieved for both ideal and basketized cases

 AVX-512 brings an extra factor of ~2 to our benchmark

Performance
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KNL R&D 2016

 Sub-node clustering with multiple propagators

 Improve data/processing locality and reduce contention

 TBB-based task based version

 Full prototype on KNL ( tabulated physics)

 Improved memory management in basketizing procedure

(NUMA awareness)
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Sub-node clustering

 Known scalability issues of full GeantV due to synchronization in re-

basketizing

 New approach deploying several propagators clustering resources 

at sub-node level

 Objectives: improved scalability at the scale of KNL and beyond, 

address both many-node and multi-socket (HPC) modes + non-

homogenous resources

 Implemented recently and tested on KNL
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 Full track transport and basketization procedure

 Simplified calorimeter 

 Tabulated physics (EM processes + various 

materials)

 Scalability gets better by increasing number of 

propagators

 The seed for GeantV core version 3

Multi-propagators prototype

1

Good scalability up to the number of physical cores
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Task based GeantV

 A first implementation of TBB task-based approach on the full track transport prototype

 Simplified detector geometry (calorimeter) + tabulated physics

 Some overheads on Haswell/AVX2, not so obvious on KNL/AVX512

 Less than 20% performance loss for the first implementation

1

2

Intel® Xeon Phi™ CPU 7210 @ 1.30GHz



 Exercise at the scale of LHC experiments (CMS)

 Full geometry + uniform magnetic field

 Tabulated physics, fixed 1MeV energy threshold

 Full  track transport and basketization procedure

 First results on scalability (comparison to classical 

approach single-thread)

The full prototype
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Full prototype performance on KNL  

 Overall we fill VPUs 

reasonably well

 Memory access analysis 

shows we are not bandwidth 

bound: most of the code runs 

as “low utilisation”(<12 

GB/sec) 
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NUMA awareness

 Replicate schedulers on NUMA clusters

 One basketizer per NUMA node

 libhwloc to detect topology

 Use pinning/NUMA allocators to increase locality

 Multi-propagator mode running one/more clusters per quadrant

 Loose communication between NUMA nodes at basketizing step

 Implemented, currently being integrated
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virtual DoIt(      ,             )SimulationStage

Handler (scalar)

Handler 

(vectorized)

Basketizer
virtual Select(track)

Executor thread

Data owned by 
thread

empty baskets taken 
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e.g. ComptonFilter::DoIt

SimulationStage::fFollowUps[i]

copy tracks

scalar or basketized filters for all 
possible actions for the stage
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Simulation stages formalize the different steps in the track 
propagation algorithm
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Processing flow per NUMA node
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GeantV plans for HPC environments

 Standard mode (1 independent process per node)

 Always possible, no-brainer

 Possible issues with work balancing (events take different time)

 Possible issues with output granularity (merging may be required)

 Multi-tier mode (event servers)

 Useful to work with events from file, to handle merging and workload 

balancing

 Communication with event servers via MPI to get event id’s in 

common files
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Alpha release of GeantV (Q4, 2017)

 Version 3 of the scheduler

 Low overhead, scalable, AOS basketizing, new interfaces, new memory 

management (NUMA + shower burners)

 Design/interfaces cleanup, refactoring of concurrency tools as separate 

library

 Demonstrator for EM physics basketizing

 Task model working with CMSSW

 Efficient deployment on HPC clusters – R&D

 Complete user interfaces (discussed with experiments)

 Full workflow simulation -> digitizers -> I/O stressing user interface (both 

standalone GeantV examples and TBB CMSSW)

 MC truth user hooks defined + most common use case demonstrators

 Efficient vectorized RK propagator including optimizations (last field value, 

helix fallback)

 Geometry with complete navigation features demonstrating vector gains 

(2017 release)

 Specialized navigators in action, including training/deployment model

 EM physics: most(?) e+/e-/gamma models in scalar mode + some vector 

gains

 Integration of MSC, development/finalizing of ionization, bremsstrahlung, 

pair production, Compton, photoelectric

 Hadronic x-sec from tables, Glauber-Gribov hadronic cross sections, 

Hadron elastic model, Part I 

 Fast simulation “hooks” a la G4 demonstrated to work in the basket flow

 Formalizing user interface, scope definition R&D, start development of a 

Multi-Objective regression  tool

 GPU demonstrator capable of doing complete simulation (e.g. CMS, no 

optimization)

 Testing/validation suite and performance demonstrators vs. Geant4
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Beta release of GeantV (Q4, 2018)

 Production-quality scheduling, including error handling at the level of track/event

 Optimization based on integration with experiment frameworks (user interfaces, digitizers flow)

 Demonstrator for performance in HPC environments

 Tuning procedure for scheduling parameters based on ML/GA

 Production-quality geometry (2018 release)

 Supporting all features of G4/ROOT, full set of shapes, demonstrators for all 4 LHC experiments

 Extended validation suite, robustness demonstration

 Demonstrator for efficient MC truth usage, based on realistic use cases from experiments

 Full EM shower physics, most CPU-consuming models vectorized

 Benchmarks demonstrating vector mode and speedup compared to G4 equivalent

 Hadronics – hadronic elastic implemented + QGS part I

 Complete model-level & application-level tests 

 Fast sim demonstrators for most common use cases

 Integration with experiment frameworks

 Demonstrator for the full learn/replay procedure – ML standalone tool + performance study for different detectors
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Conclusion and insights
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 GeantV delivers already a part of the expected performance on KNL

 Many optimization requirements, now understanding how to handle most of them

 Additional levels of locality (NUMA) available: topology detection already in GeantV, currently 

being integrated

 Exploring task-based approach:  TBB-enabled version is  ready

 Next step: V3 core in production, integration with physics and optimization

 2017 & 2018 – ambitious program of work, aiming to releasing a product having most of the 

target features to experiments


