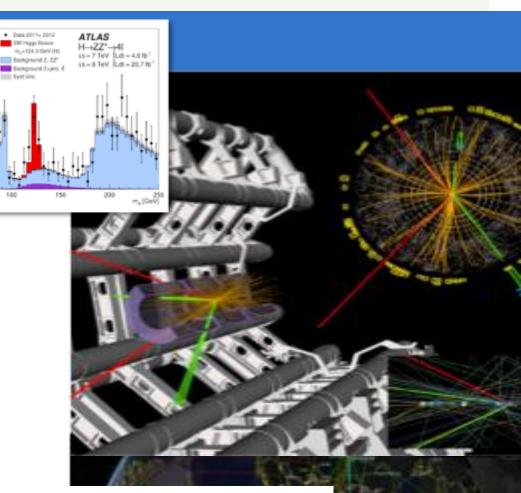


Code modernization: The GeantV project


A. Gheata for the GeantV team

Outline

- Introduction
- Geometry benchmarks: vectorization and scalability
- Particle transport improvement
- Sub-node clustering
- Task based approach
- Locality (NUMA), Machine Learning, HPC workloads
- Plans

The problem

- Detailed simulation of subatomic particles in detectors, essential for data analysis, detector design..
- Complex physics and geometry modeling
- Heavy computation requirements, massively CPU-bound

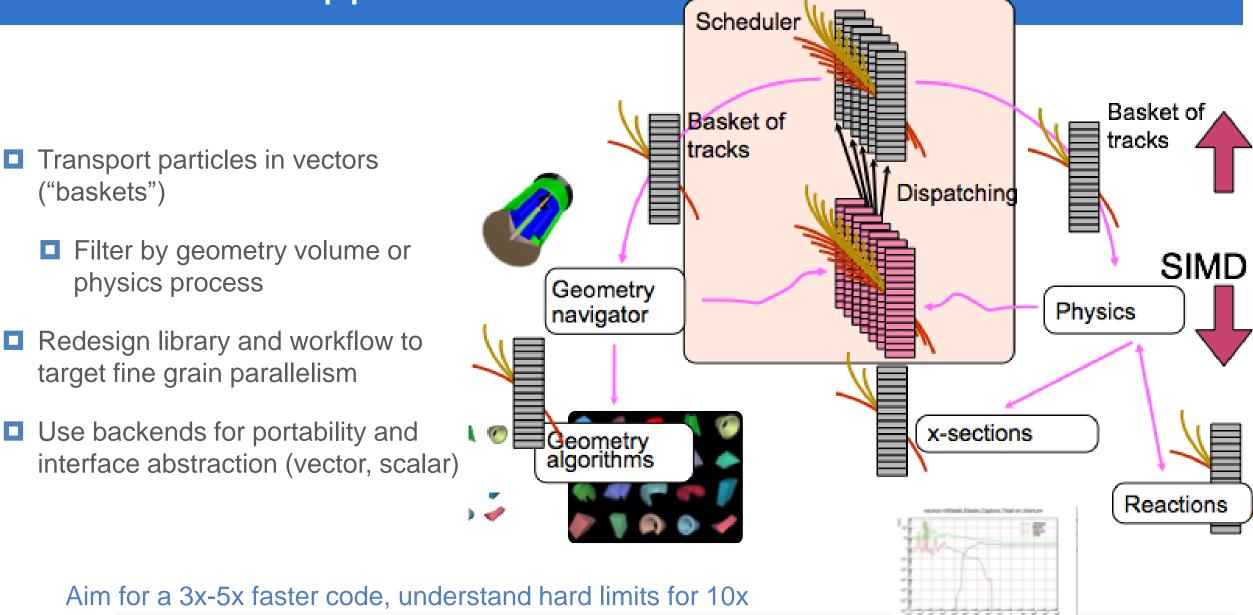
200 Computing centers in 20 countries: > 600k cores @CERN (20% WLCG): 65k processor cores ; 30PB disk + >35PB tape storage

More than 50% of WLCG power for simulations

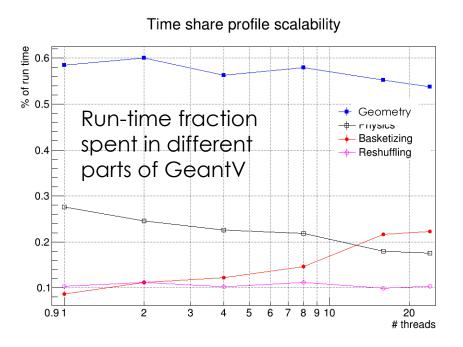
GeantV – Adapting simulation to modern hardware

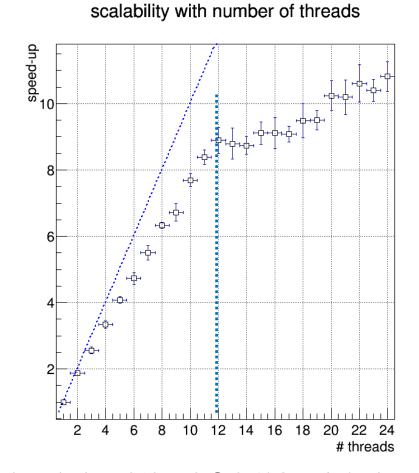
Classical simulation

hard to approach the full machine potential


- Single event scalar
 transport
- Embarrassing parallelism
- Cache coherence low
- Vectorization low (scalar auto-vectorization)
- GeantV simulation needs to profit at best from all processing pipelines Multi-event vector transport Fine grain parallelism
 - Cache coherence high
 - Vectorization high (explicit multi-particle interfaces)

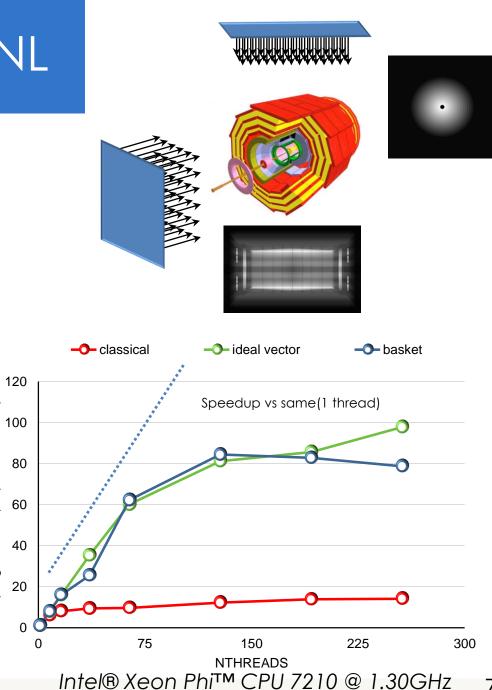
E.....


Scant.


GeantV approach

Challenges

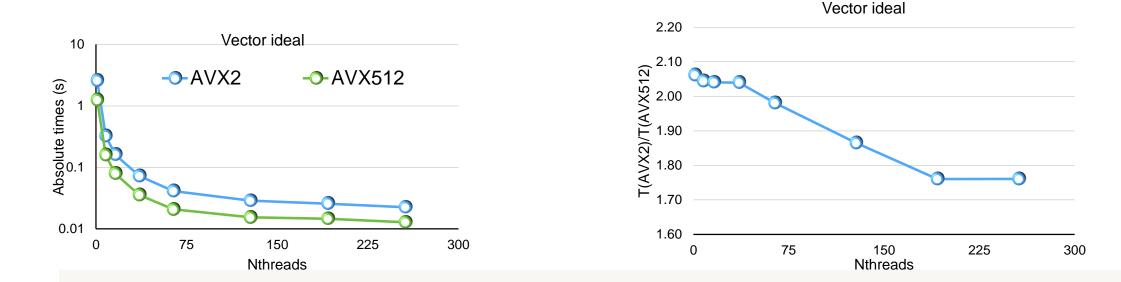
No free lunch: need to keep data gathering overheads < vector gains</p>

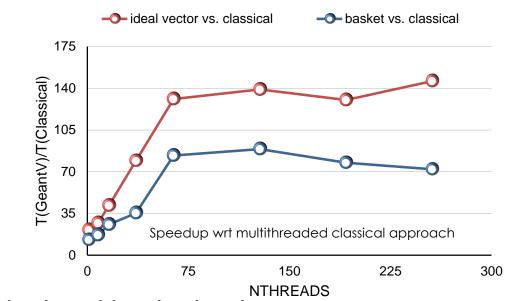


24-core dual socket E5-2695 v2 @ 2.40GHz (HSW).

Geometry navigation on KNL

- X-ray scan of detector volumes Trace a grid of virtual rays through geometry
- Simplified geometry emulating a tracker detector
- Compare GeantV basket approach to
 - Classical scalar navigation (ROOT)
 - An ideal "vector" case (no basketizing overheads)
- T(single thread)/T(multi threads) AVX512 vectorization enforced by API (UME:SIMD) backend)
- ~100x scalability for the ideal and basket versions

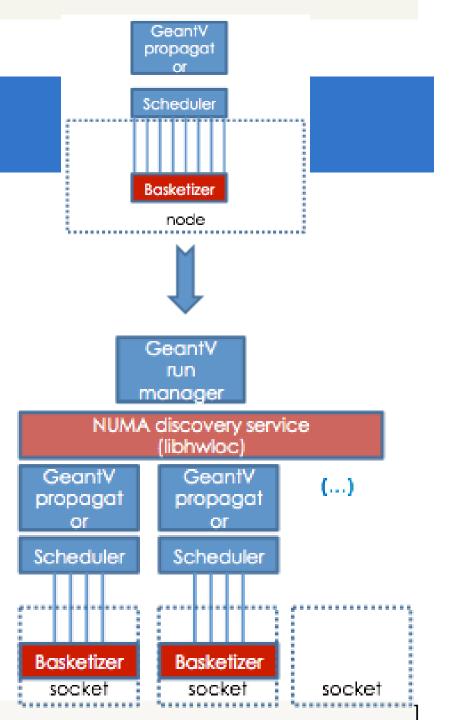



Performance

GeantV gives excellent benefits with respect to ROOT in terms of speedup

High vectorization intensity achieved for both ideal and basketized cases

■ AVX-512 brings an extra factor of ~2 to our benchmark

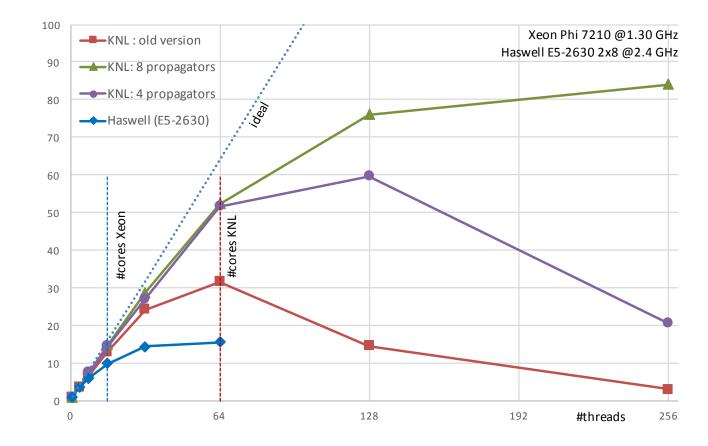


KNL R&D 2016

- Sub-node clustering with multiple propagators
 Improve data/processing locality and reduce contention
- TBB-based task based version
- Full prototype on KNL (tabulated physics)
- Improved memory management in basketizing procedure
- (NUMA awareness)

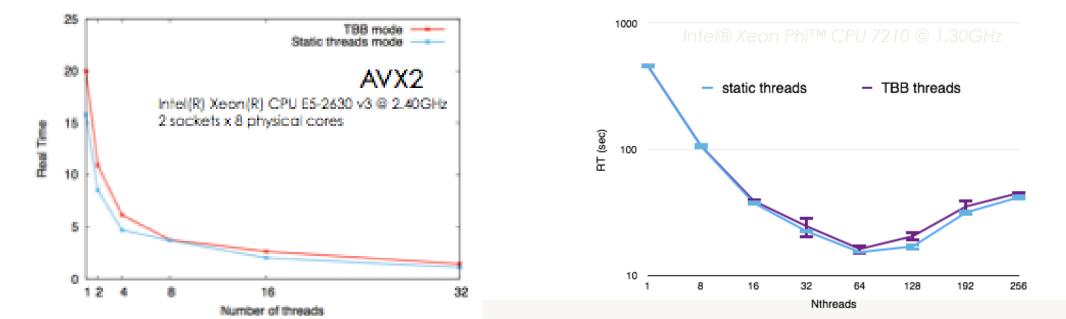
Sub-node clustering

- Known scalability issues of full GeantV due to synchronization in rebasketizing
- New approach deploying several propagators clustering resources at sub-node level
- Objectives: improved scalability at the scale of KNL and beyond, address both many-node and multi-socket (HPC) modes + nonhomogenous resources
- Implemented recently and tested on KNL

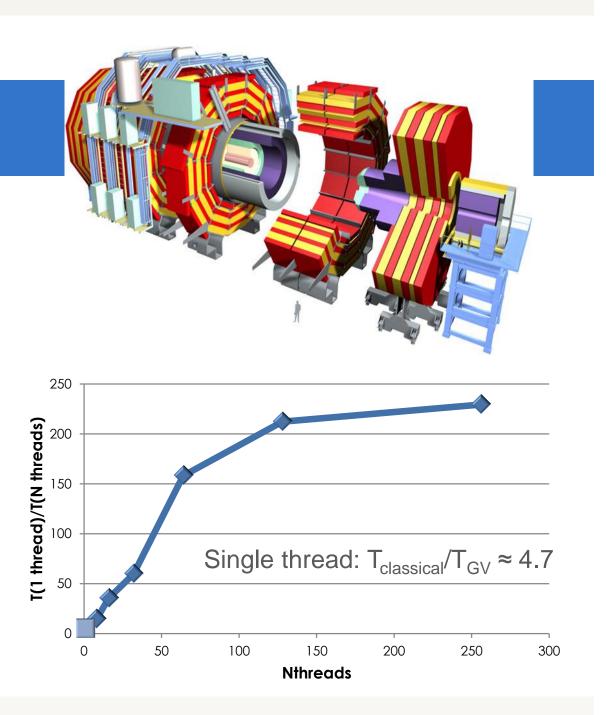


Multi-propagators prototype

Full track transport and basketization procedure


Good scalability up to the number of physical cores

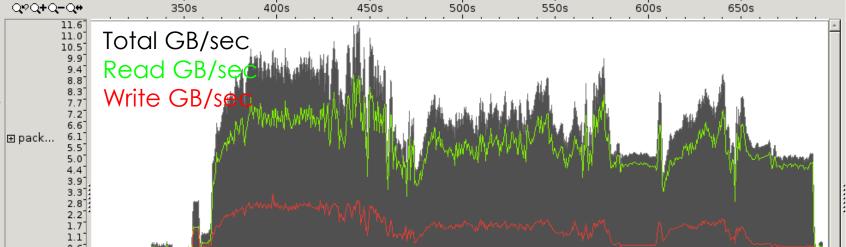
- Simplified calorimeter
- Tabulated physics (EM processes + various materials)
- Scalability gets better by increasing number of propagators
- The seed for GeantV core version 3


Task based GeantV

- A first implementation of TBB task-based approach on the full track transport prototype
 - Simplified detector geometry (calorimeter) + tabulated physics
- Some overheads on Haswell/AVX2, not so obvious on KNL/AVX512
- Less than 20% performance loss for the first implementation

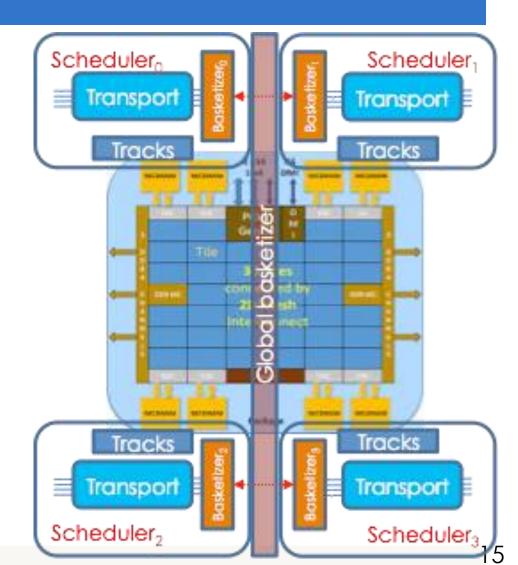
The full prototype

- Exercise at the scale of LHC experiments (CMS)
- Full geometry + uniform magnetic field
- Tabulated physics, fixed 1MeV energy threshold
- Full track transport and basketization procedure
- First results on scalability (comparison to classical approach single-thread)

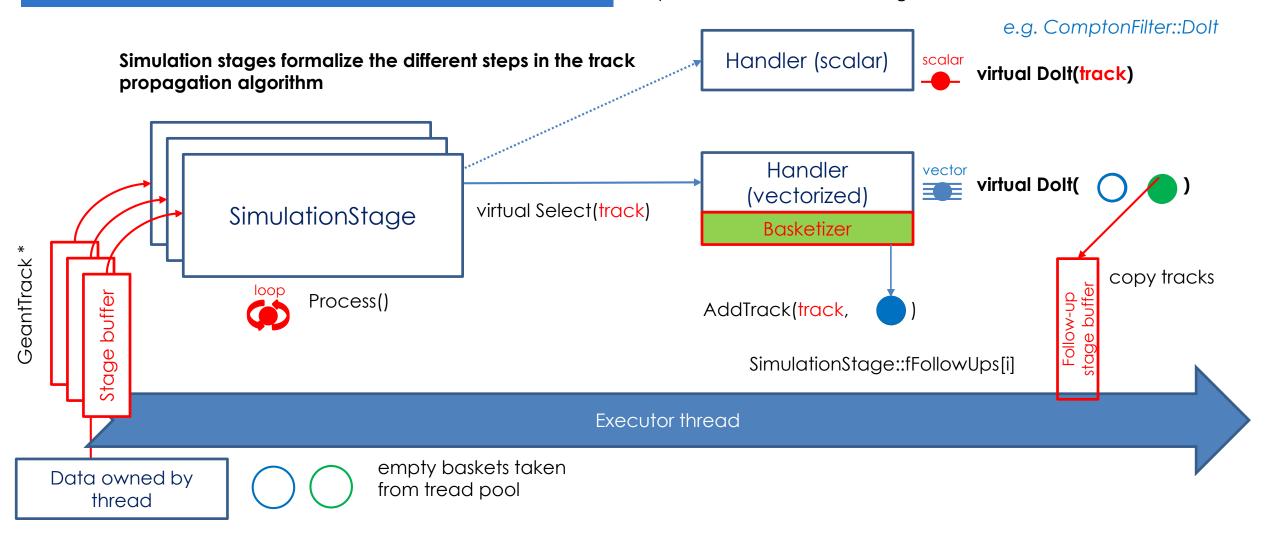

Full prototype performance on KNL

				VPU Ut	lization
Geant::cxx::GeantBasketMgr::GarbageCollect	1,007,992,700	177,079,500,000	5.692		0.0%
vecgeom::cxx::BoxImplementation::IntersectCached	765,502,400,0	304,720,000,000	2.512		75.1%
Geant::cxx::GeantBasketMgr::IsActive	572,096,200,0	75,033,400,000	7.625		0.0%
vecgeom::cxx::ABBoxImplementation::ABBoxContair	548,169,700,0	270,182,900,000	2.029		67.1%
vecgeom::cxx::Transformation3D::MultiplyFromRight	510,380,000,0	284,544,000,000	1.794		0.0%
▶do_softirq	465,290,800,0	38,340,900,000	12.136		49.1%
vecgeom::cxx::Transformation3D::DoRotation<(int)-	375,128,000,0	244,116,600,000	1.537		0.1%
▶ UME::SIMD::SIMD\/ec_f <float, (unsigned="" int)8="">::~SI</float,>	308,042,800,0	201,848,400,000	1.526		99.8%
UME::SIMD::SIMD/vecFloatInterface <ume::simd::sim< p=""></ume::simd::sim<>	281,847,800,0	198,386,500,000	1.421		99.6%
vecgeom::cxx::Vector3D <double>::operator[]</double>	273,231,400,0	131,582,100,000	2.077		0.8%
vecgeom::cxx::HybridNavigator<(bool)0>::GetHitCa	256,391,200,0	109,603,000,000	2.339		47.1%
memcpy_ssse3_back	244,886,200,0	79,907,100,000	3.065		100.0%
UME::SIMD::SIMD/vecFloatInterface <ume::simd::sim< p=""></ume::simd::sim<>	241,406,100,0	162,740,500,000	1.483		98.8%
Geant::cxx::ScalarNavinterfaceVGM::NavFindNextBo	226,302,700,0	54,250,300,000	4.171		6.1%
vecgeom::cxx::TSimpleABBoxLevelLocator<(bool)0>	220,662,000,0	115,125,400,000	1.917		36.0%
UME::SIMD::SIMD\/ecBaseInterface <ume::simd::sim< p=""></ume::simd::sim<>	216,894,600,0	166,778,300,000	1.300	1	99.2%
vecgeom::cxx::Vector3D <double>::operator[]</double>	190,830,900,0	100,120,800,000	1.906		0.1%
vecgeom::cxx::ABBoxImplementation::ABBoxSafety	187,236,400,0	83,105,100,000	2.253		95.3%
Geant::cxx::GeantTrack_v::AddTrackSync	182,943,800,0	86,737,300,000	2.109	1	17.0%
vecgeom::cxx::NavigationState::CopyTo	181,840,100,0	55,740,100,000	3.262		92.4%
Geant::cxx::WorkloadManager::TransportTracks	176,066,800,0	51,192,700,000	3.439		40.7%
vecgeom::cxx::NavigationState::Top	160,837,300,0	63,872,900,000	2.518	1	21.3%
▶ UME::SIMD::SIMD\/ecMask<(unsigned int)8>::~SIMD	155,048,400,0	95,629,300,00	Q9Q+0	o − 0+	
UME::SIMD::SIMDMaskBaseInterface <ume::simd::si< p=""></ume::simd::si<>	148,993,000,0	72,455,500,00		11.6	
Geant::cxx::GeantScheduler::AddTracks	141,200,800,0	33,819,500,00		11.0	Tat
Geant::cxx::GeantTrack_v::PropagateTracks	137,473,700,0	49,199,800,00		10.5	Tot
vecCore::MaskingImplementation <ume::simd::simd< p=""></ume::simd::simd<>	134,274,400,0	94,216,200,00		9.9	Doc
				9.4 8.8	Rec
		B/sec		8.3	Wri

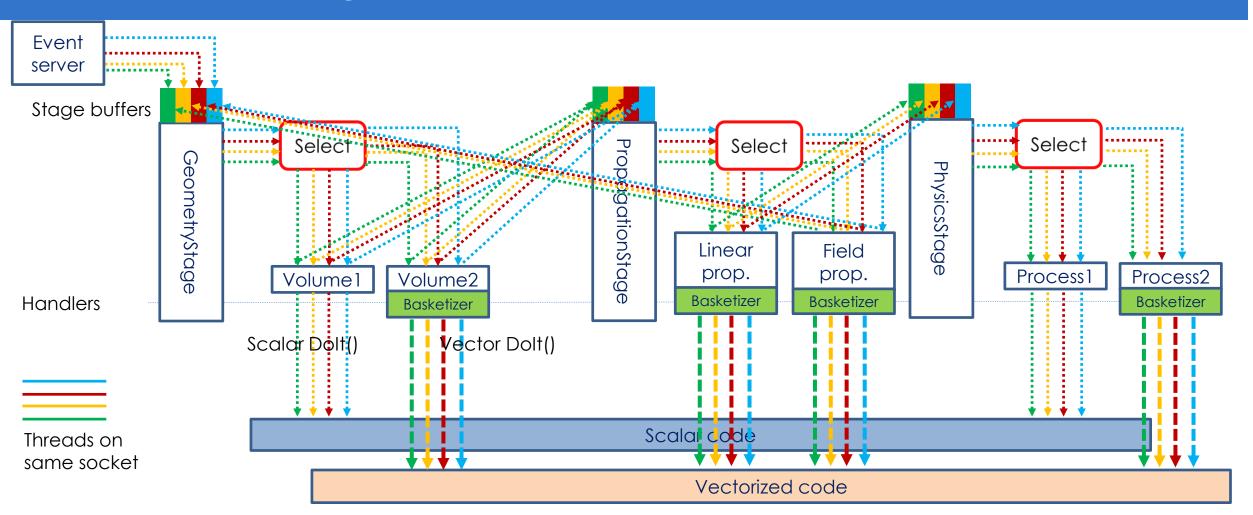
DRAM Bandwidth, GI


Overall we fill VPUs reasonably well

Memory access analysis shows we are not bandwidth bound: most of the code runs as "low utilisation" (<12 GB/sec)

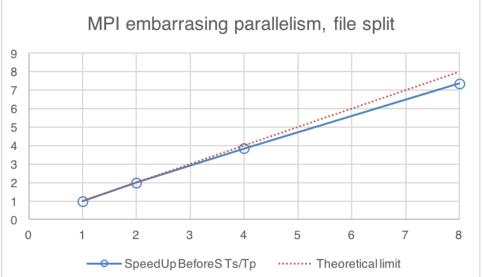

NUMA awareness

- Replicate schedulers on NUMA clusters
 - One basketizer per NUMA node
 - libhwloc to detect topology
 - Use pinning/NUMA allocators to increase locality
- Multi-propagator mode running one/more clusters per quadrant
 - Loose communication between NUMA nodes at basketizing step
 - Implemented, currently being integrated

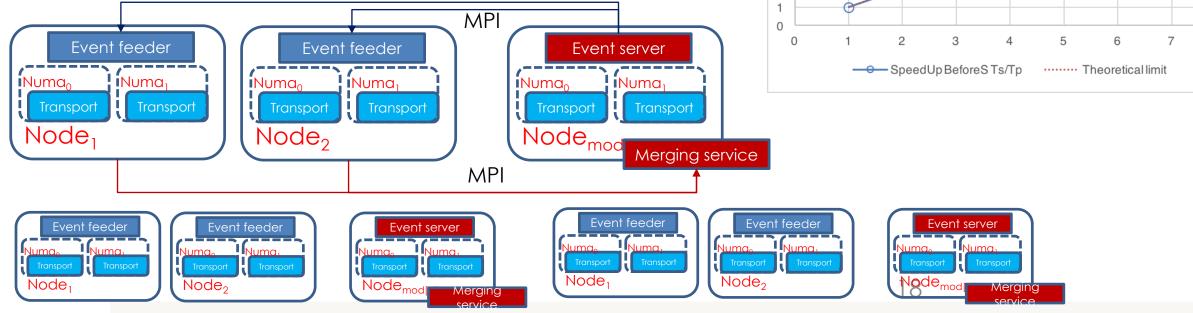


V3: A generic vector flow machine

scalar or basketized filters for all possible actions for the stage



Processing flow per NUMA node



GeantV plans for HPC environments

- Standard mode (1 independent process per node)
 - Always possible, no-brainer
 - Possible issues with work balancing (events take different time)
 - Possible issues with output granularity (merging may be required)
- Multi-tier mode (event servers)
 - Useful to work with events from file, to handle merging and workload balancing
 - Communication with event servers via MPI to get event id's in common files

R&D

Intel® Parallel Computing Centers

Intel® PCC Proposal Presentation

Machine learning based tool for fast particle transport simulation in GeantV

CERN

Principle Investigator: Dr. Federico Carminati , +41227674949 CH-1211 Geneva 23

Executive Summary:

Increasing need for computing resources has prompted a sustained effort to optimize High Energy Physics (HEP) software and simulation for new computing architectures. A new prototype for particle transport simulation, GEANTV, is being developed to improve physics accuracy and performance on modern SIMD architectures, such as Xeon Phi. A faster approach is to treat simulation as a black-box that can be replaced by a deep learning algorithm trained on different particle types, momentum and position. We aim to develop a machine learning tool to replace traditional Monte Carlo simulation. Several techniques, such as multi-objective regression and data dimensionality reduction, will be applied to improve learning time and preserve correlations between input and output. Our plan is to target highly optimized current and next-generation Intel Xeon/Xeon Phi architectures for deep learning (upcoming 2017 Knights Mill and also the expected Lake Crest and "Knights Crest") by leveraging Intel DAAL libraries, Deep Learning SDK, MKL-DNN. For the application stage we plan to also evaluate the combined Xeon FPGA platform. We expect to achieve a significant speedup (x25) with respect to GeantV full simulation approach. Development of such machine learning simulation tools can further benefit other fields, such as radioactivity protection, environmental modeling and medicine.

Work Plan – Year 1						
Year 1: project start date is MONTH/DAY/2017 through end date MONTH/DAY/2018.						
Overall Goal For Year 1:						
Deliverables	Success Criteria	Timeframe				
Specific actions of work performed	Significant results (performance improvements, Peer reviewed papers), help needed, etc.	Completion Date				
 Evaluate machine learning model for multi-objective regression based on predictive clustering trees on simulated single particle dataset Evaluate adversarial training model (GAN) on same dataset 	• Prediction accuracy of detector response to single particles, proper treatment of output correlations, first results in feature evaluation, first timing benchmark of application	Year 1, Q1				
 Extend deep learning regression to multiple targets (evaluate DAAL and Neon in this context) Implement first Geanty fast simulation interface 	 Multi-objective deep learning regression prototype First interface to parametric fast simulation of a simple calorimeter 	Year 1, Q2				
 Model training and optimization with feature extraction Evaluate auto-regression model in adversarial training for multiple targets 	 Improved accuracy of models after feature extraction Auto-regression model for multi-objective regression 	Year 1, Q3				
 Optimized deep learning multi-objective regression model Extend GeantV interface to include non-parametric machine learning models 	 Correct correlations, high accuracy, timing benchmark for standalone model application Working prototype of non-parametric <u>GeantV</u> interface, first timing performance evaluation 	Year 1, Q4				

Alpha release of GeantV (Q4, 2017)

Version 3 of the scheduler

- Low overhead, scalable, AOS basketizing, new interfaces, new memory management (NUMA + shower burners)
- Design/interfaces cleanup, refactoring of concurrency tools as separate library
- Demonstrator for EM physics basketizing
- Task model working with CMSSW
- Efficient deployment on HPC clusters R&D
- **Complete user interfaces (discussed with experiments)**
 - Full workflow simulation -> digitizers -> I/O stressing user interface (both standalone GeantV examples and TBB CMSSW)
 - MC truth user hooks defined + most common use case demonstrators
- Efficient vectorized RK propagator including optimizations (last field value, helix fallback)
- Geometry with complete navigation features demonstrating vector gains (2017 release)
 - Specialized navigators in action, including training/deployment model

- EM physics: most(?) e+/e-/gamma models in scalar mode + some vector gains
 - Integration of MSC, development/finalizing of ionization, bremsstrahlung, pair production, Compton, photoelectric
- Hadronic x-sec from tables, Glauber-Gribov hadronic cross sections, Hadron elastic model, Part I
- **G** Fast simulation "hooks" a la G4 demonstrated to work in the basket flow
 - Formalizing user interface, scope definition R&D, start development of a Multi-Objective regression tool
- GPU demonstrator capable of doing complete simulation (e.g. CMS, no optimization)
 - Testing/validation suite and performance demonstrators vs. Geant4

Beta release of GeantV (Q4, 2018)

- Production-quality scheduling, including error handling at the level of track/event
 - Optimization based on integration with experiment frameworks (user interfaces, digitizers flow)
 - Demonstrator for performance in HPC environments
 - Tuning procedure for scheduling parameters based on ML/GA
- Production-quality geometry (2018 release)
 - Supporting all features of G4/ROOT, full set of shapes, demonstrators for all 4 LHC experiments
 - Extended validation suite, robustness demonstration
- Demonstrator for efficient MC truth usage, based on realistic use cases from experiments
- Full EM shower physics, most CPU-consuming models vectorized
 - Benchmarks demonstrating vector mode and speedup compared to G4 equivalent
- Hadronics hadronic elastic implemented + QGS part I
 - Complete model-level & application-level tests
- Fast sim demonstrators for most common use cases
 - Integration with experiment frameworks
 - Demonstrator for the full learn/replay procedure ML standalone tool + performance study for different detectors

Conclusion and insights

- GeantV delivers already a part of the expected performance on KNL
 - Many optimization requirements, now understanding how to handle most of them
- Additional levels of locality (NUMA) available: topology detection already in GeantV, currently being integrated
- Exploring task-based approach: TBB-enabled version is ready
- Next step: V3 core in production, integration with physics and optimization
- 2017 & 2018 ambitious program of work, aiming to releasing a product having most of the target features to experiments