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The problem

 Detailed simulation of subatomic particles in detectors, 

essential for data analysis, detector design..

 Complex physics and geometry modeling

 Heavy computation requirements, massively CPU-bound

3

More than 50% of WLCG power for simulations

200 Computing centers in 20 countries: > 600k cores

@CERN (20% WLCG): 65k processor cores ; 30PB disk + >35PB tape 

storage 



GeantV – Adapting simulation to modern hardware
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Classical 

simulation
hard to approach 
the full machine 
potential

GeantV

simulation
needs to profit at 
best from all 
processing 
pipelines

• Single event scalar 

transport

• Embarrassing parallelism

• Cache coherence – low

• Vectorization – low (scalar 

auto-vectorization)

• Multi-event vector transport

• Fine grain parallelism

• Cache coherence – high

• Vectorization – high (explicit 

multi-particle interfaces)



GeantV approach
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 Transport particles in vectors 

(“baskets”)

 Filter by geometry volume or 

physics process

 Redesign library and workflow to 

target fine grain parallelism

 Use backends for portability and 

interface abstraction (vector, scalar) 

Aim for a 3x-5x faster code, understand hard limits for 10x



Challenges

 No free lunch: need to keep data gathering 

overheads < vector gains

Geometry
Run-time fraction 

spent in different 

parts of GeantV

24-core dual socket E5-2695 v2 @ 2.40GHz (HSW).
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 X-ray scan of detector volumes

 Trace a grid of virtual rays through geometry

 Simplified geometry emulating a tracker detector 

 Compare GeantV basket approach to

 Classical scalar navigation (ROOT)

 An ideal “vector” case (no basketizing

overheads)

 AVX512 vectorization enforced by API (UME:SIMD 

backend)

 ~100x scalability for the ideal and basket versions

Geometry navigation on KNL
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 High vectorization intensity achieved for both ideal and basketized cases

 AVX-512 brings an extra factor of ~2 to our benchmark

Performance
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KNL R&D 2016

 Sub-node clustering with multiple propagators

 Improve data/processing locality and reduce contention

 TBB-based task based version

 Full prototype on KNL ( tabulated physics)

 Improved memory management in basketizing procedure

(NUMA awareness)
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Sub-node clustering

 Known scalability issues of full GeantV due to synchronization in re-

basketizing

 New approach deploying several propagators clustering resources 

at sub-node level

 Objectives: improved scalability at the scale of KNL and beyond, 

address both many-node and multi-socket (HPC) modes + non-

homogenous resources

 Implemented recently and tested on KNL

1
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 Full track transport and basketization procedure

 Simplified calorimeter 

 Tabulated physics (EM processes + various 

materials)

 Scalability gets better by increasing number of 

propagators

 The seed for GeantV core version 3

Multi-propagators prototype
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Good scalability up to the number of physical cores
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Task based GeantV

 A first implementation of TBB task-based approach on the full track transport prototype

 Simplified detector geometry (calorimeter) + tabulated physics

 Some overheads on Haswell/AVX2, not so obvious on KNL/AVX512

 Less than 20% performance loss for the first implementation
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Intel® Xeon Phi™ CPU 7210 @ 1.30GHz



 Exercise at the scale of LHC experiments (CMS)

 Full geometry + uniform magnetic field

 Tabulated physics, fixed 1MeV energy threshold

 Full  track transport and basketization procedure

 First results on scalability (comparison to classical 

approach single-thread)

The full prototype
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Full prototype performance on KNL  

 Overall we fill VPUs 

reasonably well

 Memory access analysis 

shows we are not bandwidth 

bound: most of the code runs 

as “low utilisation”(<12 

GB/sec) 
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NUMA awareness

 Replicate schedulers on NUMA clusters

 One basketizer per NUMA node

 libhwloc to detect topology

 Use pinning/NUMA allocators to increase locality

 Multi-propagator mode running one/more clusters per quadrant

 Loose communication between NUMA nodes at basketizing step

 Implemented, currently being integrated
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virtual DoIt(      ,             )SimulationStage

Handler (scalar)
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(vectorized)
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virtual Select(track)
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Processing flow per NUMA node
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GeantV plans for HPC environments

 Standard mode (1 independent process per node)

 Always possible, no-brainer

 Possible issues with work balancing (events take different time)

 Possible issues with output granularity (merging may be required)

 Multi-tier mode (event servers)

 Useful to work with events from file, to handle merging and workload 

balancing

 Communication with event servers via MPI to get event id’s in 

common files
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Alpha release of GeantV (Q4, 2017)

 Version 3 of the scheduler

 Low overhead, scalable, AOS basketizing, new interfaces, new memory 

management (NUMA + shower burners)

 Design/interfaces cleanup, refactoring of concurrency tools as separate 

library

 Demonstrator for EM physics basketizing

 Task model working with CMSSW

 Efficient deployment on HPC clusters – R&D

 Complete user interfaces (discussed with experiments)

 Full workflow simulation -> digitizers -> I/O stressing user interface (both 

standalone GeantV examples and TBB CMSSW)

 MC truth user hooks defined + most common use case demonstrators

 Efficient vectorized RK propagator including optimizations (last field value, 

helix fallback)

 Geometry with complete navigation features demonstrating vector gains 

(2017 release)

 Specialized navigators in action, including training/deployment model

 EM physics: most(?) e+/e-/gamma models in scalar mode + some vector 

gains

 Integration of MSC, development/finalizing of ionization, bremsstrahlung, 

pair production, Compton, photoelectric

 Hadronic x-sec from tables, Glauber-Gribov hadronic cross sections, 

Hadron elastic model, Part I 

 Fast simulation “hooks” a la G4 demonstrated to work in the basket flow

 Formalizing user interface, scope definition R&D, start development of a 

Multi-Objective regression  tool

 GPU demonstrator capable of doing complete simulation (e.g. CMS, no 

optimization)

 Testing/validation suite and performance demonstrators vs. Geant4
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Beta release of GeantV (Q4, 2018)

 Production-quality scheduling, including error handling at the level of track/event

 Optimization based on integration with experiment frameworks (user interfaces, digitizers flow)

 Demonstrator for performance in HPC environments

 Tuning procedure for scheduling parameters based on ML/GA

 Production-quality geometry (2018 release)

 Supporting all features of G4/ROOT, full set of shapes, demonstrators for all 4 LHC experiments

 Extended validation suite, robustness demonstration

 Demonstrator for efficient MC truth usage, based on realistic use cases from experiments

 Full EM shower physics, most CPU-consuming models vectorized

 Benchmarks demonstrating vector mode and speedup compared to G4 equivalent

 Hadronics – hadronic elastic implemented + QGS part I

 Complete model-level & application-level tests 

 Fast sim demonstrators for most common use cases

 Integration with experiment frameworks

 Demonstrator for the full learn/replay procedure – ML standalone tool + performance study for different detectors
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Conclusion and insights
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 GeantV delivers already a part of the expected performance on KNL

 Many optimization requirements, now understanding how to handle most of them

 Additional levels of locality (NUMA) available: topology detection already in GeantV, currently 

being integrated

 Exploring task-based approach:  TBB-enabled version is  ready

 Next step: V3 core in production, integration with physics and optimization

 2017 & 2018 – ambitious program of work, aiming to releasing a product having most of the 

target features to experiments


