Status of constraints in alignment

Problem: we can increase quality of alignment if we take into account various constant geometrical structure of the detector stations and the spectrometer, such as: the distance between two planes, the constant right angle between some U and V axis etc.

There were some efforts to introduce constraints.
One of them is reparam option for Z coordinate (incomplete).
My idea is to try doing it using theory of alignment.
From the theory side, constraint is an inhomogeneous linear form which must equal zero:

$$
\begin{equation*}
f(\vec{a})=\alpha_{1} a^{1}+\alpha_{2} a^{2}+\ldots+\alpha_{n} a^{n}+\beta=0 \tag{1}
\end{equation*}
$$

$\vec{a}-$ vector of aligning parameters.
Example: the constant distance d between X and Y planes in some det station:

$$
\begin{equation*}
1 \cdot Z_{X} \text { _plane }-1 \cdot Z_{Y _ \text {plane }}-d=0 \tag{2}
\end{equation*}
$$

Status of constraints in alignment

Alignment in COMPASS is based on millepede programm by Volker Blobel. millepede.F provides CONSTF function:

```
387
388
SUBROUTINE CONSTF(DERCS,RHS)
optional: constraints
390 * Basic dimension parameters
391
392
PARAMETER (MGLOBL=3000,MLOCAL=10,NSTORE=100000,MCS=10) ! dimensions
PARAMETER (MGL=MGLOBL+MCS) ................... derived parameter
derived parameters
PARAMETER (MSYMGB =(MGLOBL*MGLOBL+MGLOBL)/2,
+\cdots.......MSM =(MGL*MGL+MGL)/2,
396 + M MYMLC=(MLOCAL*MLOCAL+MLOCAL)/2,
```



```
398 . + . . MGLOCS= MGLOBL*MCS,
```


- RHS - free parameter β in linear form (1), i.e. distance or the value of angle between two planes.
- DERCS - an array with length in NGLB elements (number of global parameters, it should be the dimension of the vector \vec{a} in (1)).

Status of constraints in alignment

 Attempts- I modified Align.cc, Align.h, Main.align.cc in the alignment source folder in order to test and debug.
Align procedure sees that «constraint» was added, console outputs:

```
Constraint 1 Sum - RHS = 0.0000 - 0.50000E-01 = -0.50000E-01
```

- There is no different between the alignment *.out files with constraints and without ones.
- I was trying various numbers in the filling of the CONSTR array for:

$$
\begin{equation*}
Z_{G M 09 Y 1}-Z_{G M 09 X 1}=0.05 \mathrm{~mm} \tag{3}
\end{equation*}
$$

But the result is the same.

Status of constraints in alignment

Conclusion

- It is clear how to modify alignment code in order to introduce new option for constraints.
- It is clear how to connect Align.cc and other with millepede.F sending the necessary constraint array.
- But it is not clear how to correct fill this array...

Now the main problem for me is to understand the form (1) from the code side.
There is official example in millepede how to use constraint.
The array filling is the following:
FROT (1) $=0.0$
DO $\mathrm{I}=2,10$ FROT(I) $=1.0 /(X(I)-X(1))$
END DO
CALL CONSTF (FROT, 0.0)

By the way

Error when Z coordinate is unfixed in align.opt

```
*** Break *** bus error
There was a crash.
This is the entire stack trace of all threads:
#0 0x00007efe8e9047be in waitpid () from /lib64/libc.so.6
#1 0x00007efe8e8965c9 in do_system () from /lib64/libc.so.6
#2 0x00007efe93e8993c in TUnixSystem::StackTrace() () from /afs/cern.ch
/sw/lcg/app/releases/R00T/5.34.07a/x86 64-slc6-gcc47-opt/root/lib/libCore.so
#3 0x00007efe93e8c173 in TUnixSystem::DispatchSignals(ESignals) () from
/afs/cern.ch/sw/lcg/app/releases/R00T/5.34.07a/x86_64-slc6-gcc47-opt/root/
lib/libCore.so
#4 <signal handler called>
#5 0x00000000004266e9 in Align::_Dump(std::basic_ostream<char, std::char_traits
kchar> >&, char const*) ()
#6 0x00000000004278a0 in Align::DumpToFile(char const*, char const*) ()
#7 0x000000000041dae4 in main ()
```

