
Status of the ATLAS Experiment

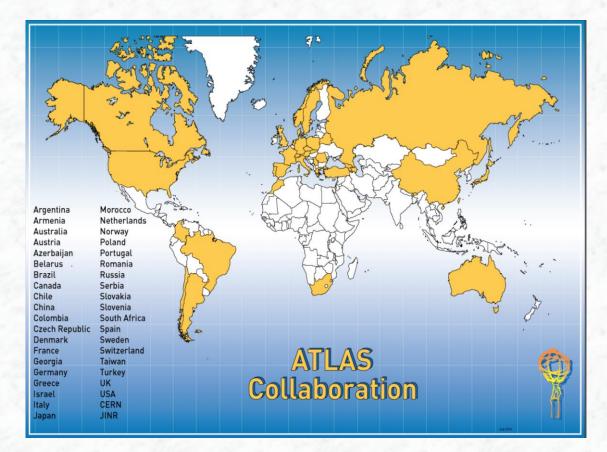
Karl Jakobs University of Freiburg / Germany

44th Meeting of the ATLAS RRB, 25th April 2017

Status of the ATLAS Experiment

- Collaboration and Management matters
- Physics Highlights (short summary)
- Towards Running in 2017 (Offline)
- Phase-II Upgrade
 Status of TDRs, Approval process

Karl Jakobs University of Freiburg / Germany


44th Meeting of the ATLAS RRB, 25th April 2017

Collaboration

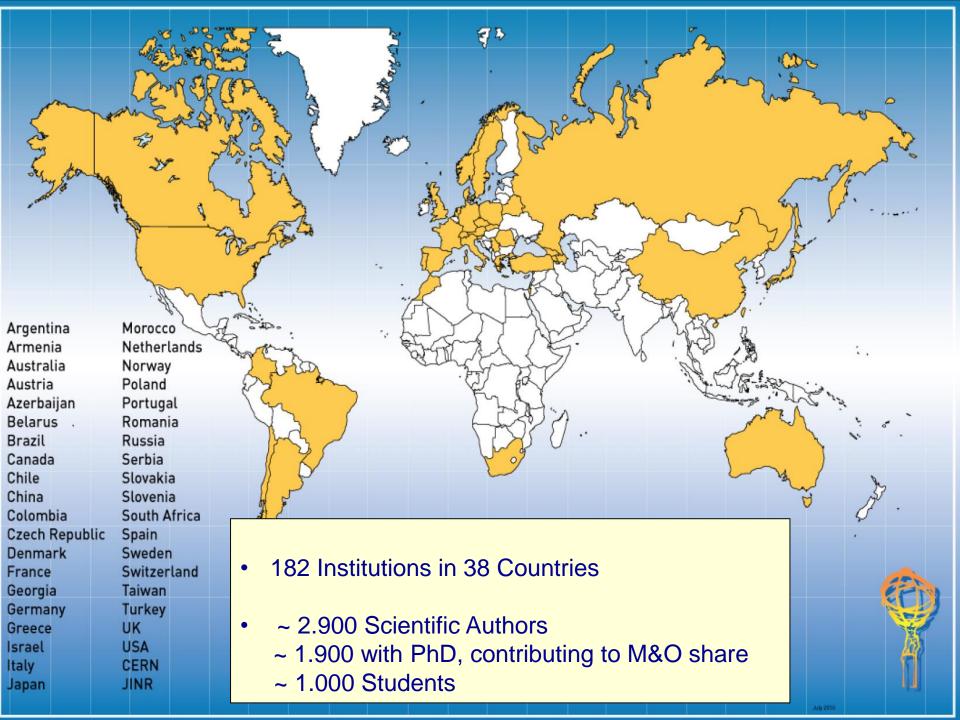
and

Management Matters

Argentina Armenia Australia Austria Azerbaijan Belarus Brazil Canada Chile China Colombia Czech Rep Denmark France Georgia Germany Greece Israel Italy

Japan

Portugal Barracia

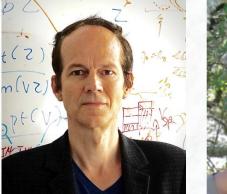

Morocco Setherlands

Norway Poland

No major changes in the collaboration composition w.r.t. previous RRB meeting:

33

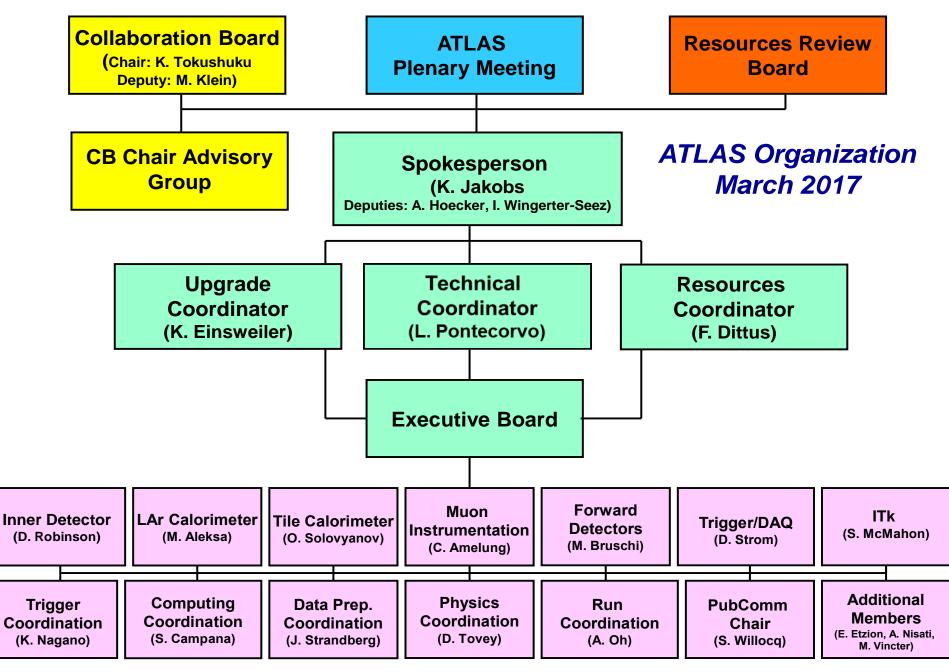
- National Center for Scientific Research "Demokritos" Athens joined as an Associate Institute, affiliated to NTU Athens (Expression of Interest to join ATLAS as a full member institution expected)
- ZiTi Heidelberg (Zentrum für Technische Informatik) withdrew from the Heidelberg cluster (two institutes remain in the cluster)
 - → No change in the Collaboration Board Composition


ATLAS Management Team March 2017 – February 2019

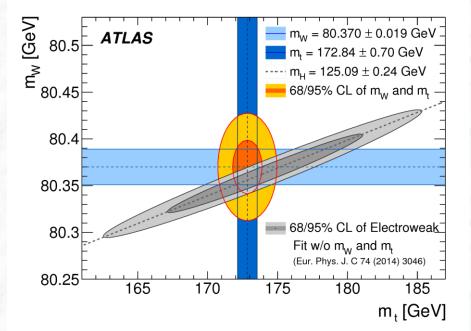
Spokesperson: Karl Jakobs (Freiburg)

Deputy Spokespersons:

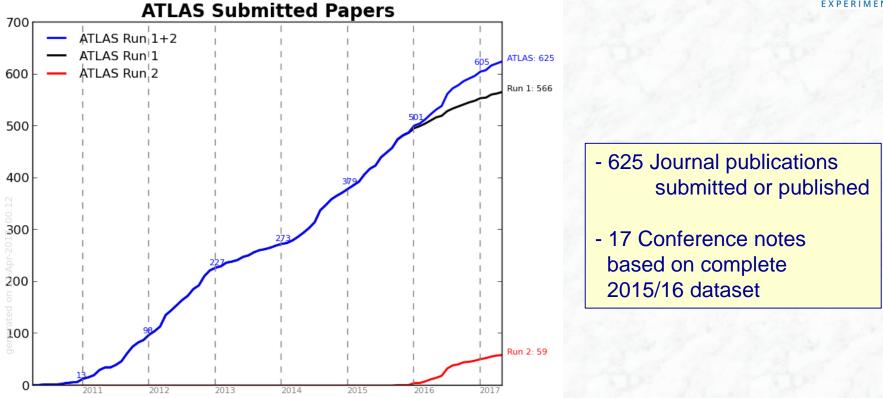
- Andreas Hoecker (CERN)
- Isabelle Wingerter-Seez (Annecy LAPP)



Technical Coordinator: Resources Coordinator: Upgrade Coordinator: Ludovico Pontecorvo (CERN / INFN) Fido Dittus (CERN) Kevin Einsweiler (Berkeley LBNL)


ATLAS RRB Meeting, 25th April 2017

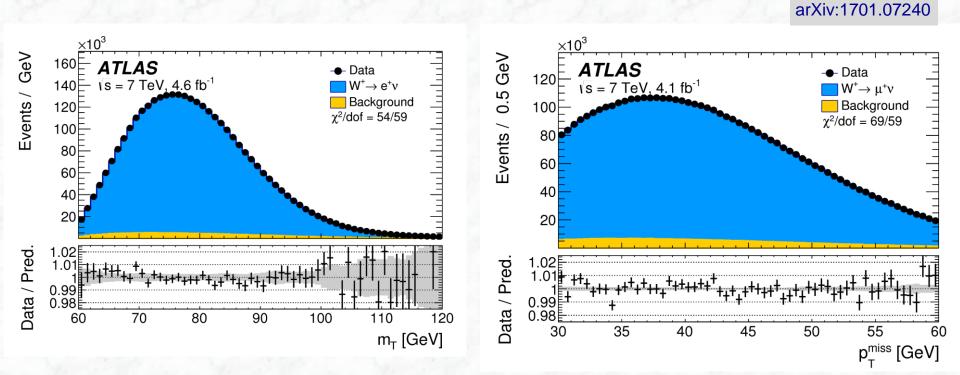
A few Highlights from Physics Analysis


• Precision measurements (based on Run-1 data)

• Searches for BSM Physics (based on complete Run-2 dataset, 2015/16 data)

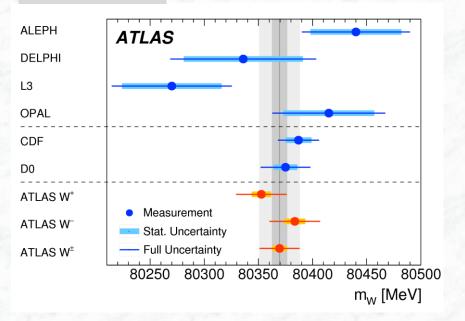
ATLAS Publication Statistics

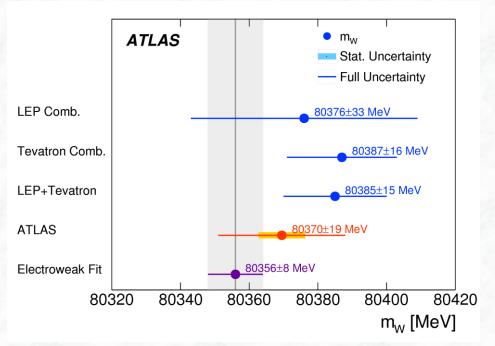
 Run-1 papers: publications continue, now focus on precision measurements (well calibrated and understood dataset)


 Run-2 papers: focus is now on the publication of searches and measurements (e.g. in the Higgs area) based on the full 2015 + 2016 dataset so far: 2 papers published and 17 CONF notes (Winter conferences) released on the full Run-2 dataset

ATLAS RRB Meeting, 25th April 2017

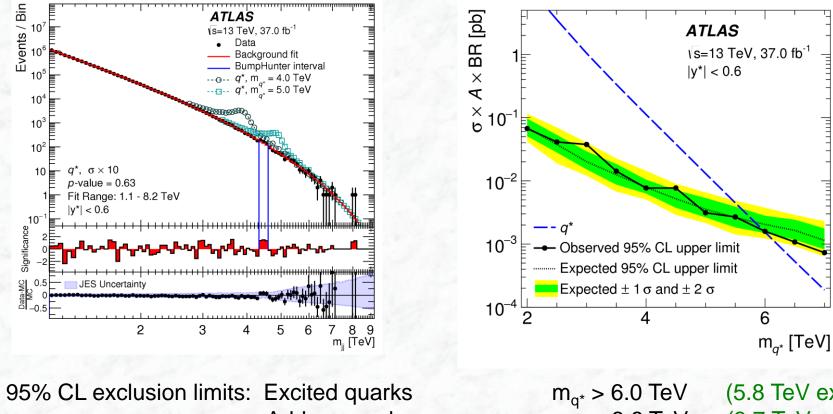
Measurement of the W-boson mass


- Based on early data (2011) at $\sqrt{s} = 7 \text{ TeV} (4.6 \text{ fb}^{-1})$
- Huge amount of work to understand detector response and the modelling of kinematic quantities (relies on large Z → ll sample)
- High quality analysis in W \rightarrow ev and W \rightarrow $\mu\nu$ channels



Measurement of the W-boson mass (cont.)

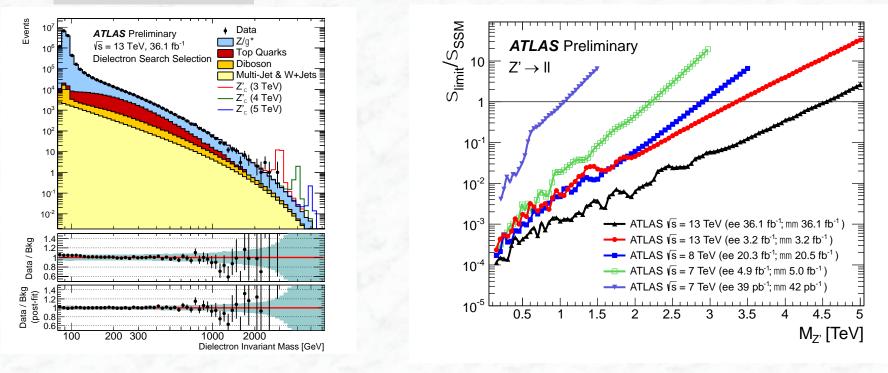
arXiv:1701.07240


Same precision reached as for current best measurement from the CDF experiment $\label{eq:mW} \begin{array}{l} m_W = 80.370 \ \pm \ 0.019 \ \text{GeV} \\ \\ \pm \ 7 \ \text{MeV statistical} \\ \pm \ 11 \ \text{MeV systematic} \\ \\ \pm \ 14 \ \text{MeV modeling} \end{array}$

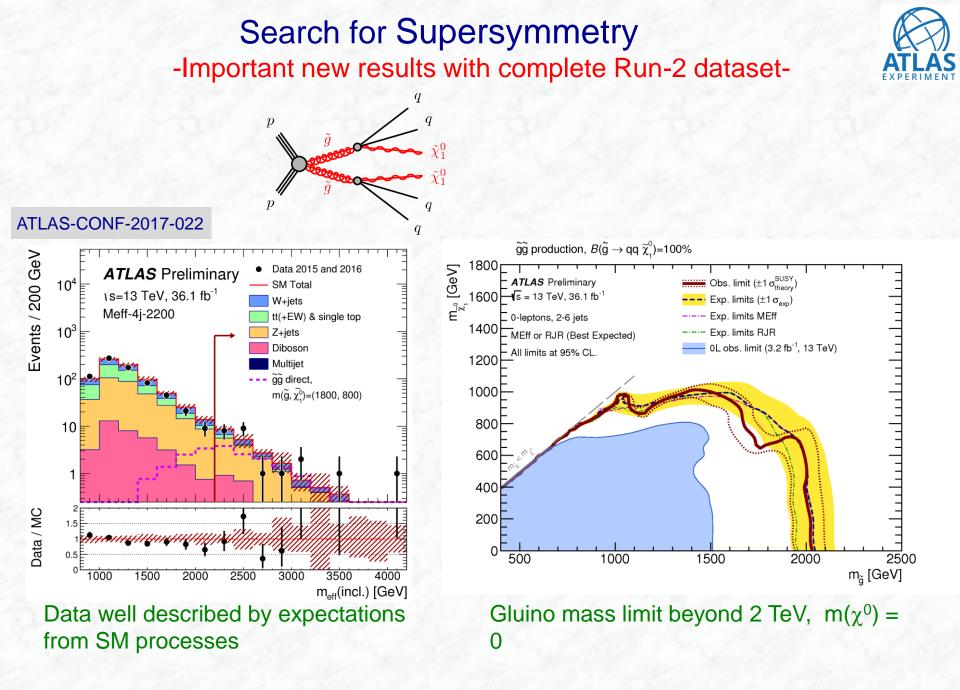
Search for new phenomena in di-jet events

First publication on complete Run-2 (2015+2016) dataset: 37.0 fb⁻¹ at \sqrt{s} = 13 TeV

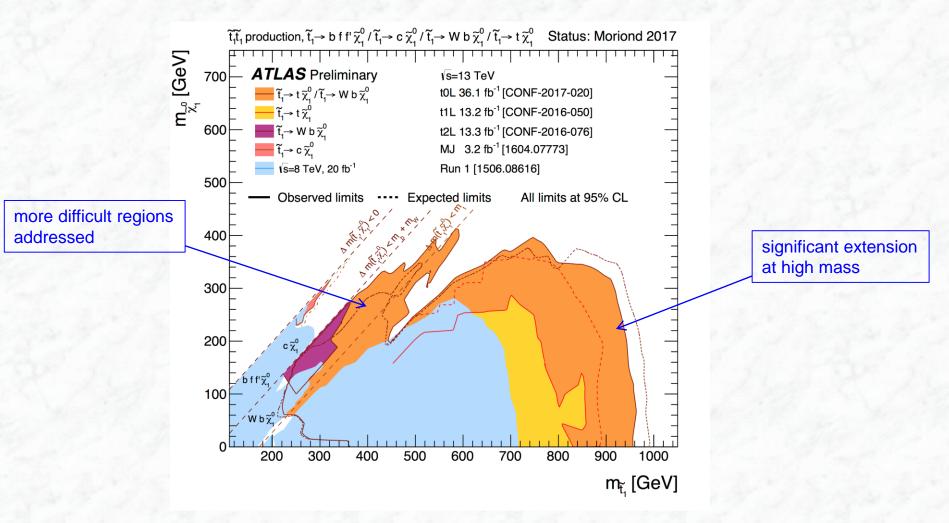
arXiv:1703.09127


Add. gauge bosons: Quantum Black Holes: Contact Interactions: $\begin{array}{ll} m_{q^{*}} > 6.0 \mbox{ TeV} & (5.8 \mbox{ TeV exp.}) \\ m_{W'} > 3.6 \mbox{ TeV} & (3.7 \mbox{ TeV exp.}) \\ m_{BH} > 8.9 \mbox{ TeV} & (8.9 \mbox{ TeV exp.}) \\ \Lambda > 13.1 \mbox{ TeV} & (\eta_{LL} = +1) \\ \Lambda > 21.8 \mbox{ TeV} & (\eta_{LL} = -1) \end{array}$

Search for di-lepton resonances



• Search is based on complete Run-2 (2015+2016) dataset: 36.1 fb⁻¹ at \sqrt{s} = 13 TeV

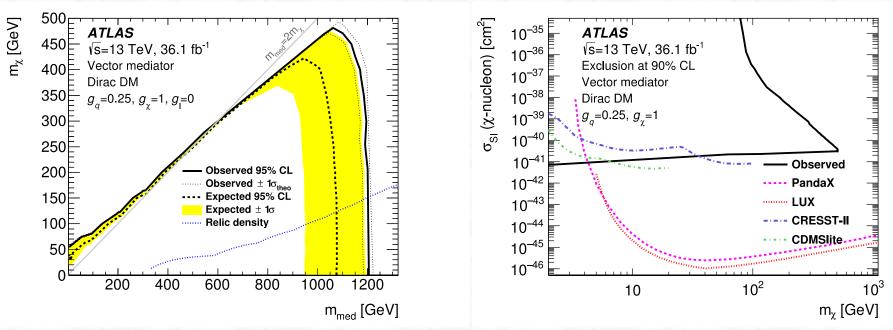


- No significant deviations from the Standard Model expectations observed
 - → resulting lower mass limits, e.g. m(Z'_{SSM}) > 4.5 TeV (95% C.L.) significant improvement w.r.t. Run 1 (due to higher energy)
- In addition: no indication of contact interactions, energy scale $\Lambda_{llag} > 23.5 40.1 \text{ TeV}$

Search for Supersymmetry -update on searches for the top squark (stop)-

- Stop mass limit beyond 0.9 TeV, $m(\chi^0) = 0$
- Some difficult parameter regions at low mass still uncovered

ATLAS SUSY Searches* - 95% CL Lower Limits


Status: March 2017

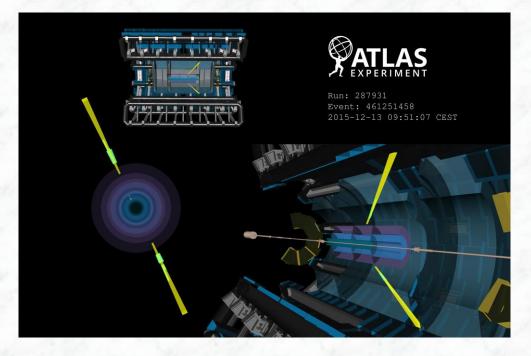
S	tatus: March 2017			∠ miss	(c tre				$\sqrt{s} = 7, 8, 13 \text{ TeV}$
	Model	<i>e</i> , μ, τ, γ	Jets	L _T	$\int \mathcal{L} dt [fb$	⁻¹] Mass limit	$\sqrt{s} = 7, 8$	TeV $\sqrt{s} = 13$ TeV	Reference
Inclusive Searches	$\begin{array}{l} \text{MSUGRA/CMSSM} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \bar{k}_0^{\bar{q}} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \bar{k}_0^{\bar{1}} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \bar{q} \bar{k}_0^{\bar{1}} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \bar{q} \bar{k}_1^{\bar{1}} \rightarrow q q W^{\pm} \bar{x}_1^{\bar{1}} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q q \bar{q} (\ell_1) \gamma \tilde{y}_1^{\bar{0}} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q q W Z_1^{\bar{0}} \\ \bar{g}\text{MSB} (\ell \text{ NLSP}) \\ \text{GMM (bino NLSP)} \\ \text{GGM (higgsino-bino NLSP)} \\ \text{GGM (higgsino-bino NLSP)} \\ \text{GGM (higgsino LSP)} \\ \text{Gravitino LSP} \end{array}$	$\begin{array}{c} 0.3 \ e, \mu/1-2 \ \tau \\ 0 \\ mono-jet \\ 0 \\ 3 \ e, \mu \\ 2 \ e, \mu \ (SS) \\ 1-2 \ \tau + 0-1 \ e \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 0-3 jets	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 36.1 3.2 36.1 13.2 13.2 3.2 3.2 20.3 13.3 20.3 20.3	\$\tilde{q}\$, \$\tilde{g}\$ \$\tilde{q}\$ \$\tilde{q}\$ \$\tilde{q}\$ \$\tilde{g}\$ \$\tilde{g}\$ <td>1.85 TeV 1.57 TeV 2.02 TeV 2.01 TeV 1.7 TeV 1.6 TeV 2.0 TeV 1.65 TeV 1.65 TeV 1.8 TeV</td> <td>$\begin{split} & m(\tilde{q}) = m(\tilde{g}) \\ & n(\tilde{k}_1^0) < 200 \ \text{GeV}, \ m(1^{16} \ \text{gen.} \ \tilde{q}) = m(2^{md} \ \text{gen.} \ \tilde{q}) \\ & m(\tilde{q}) + n(\tilde{k}_1^0) < 5 \ \text{GeV} \\ & m(\tilde{k}_1^0) < 200 \ \text{GeV} \\ & m(\tilde{k}_1^0) < 200 \ \text{GeV}, \ m(\tilde{k}^{\pm}) = 0.5 (m(\tilde{k}_1^0) + m(\tilde{g})) \\ & m(\tilde{k}_1^0) < 400 \ \text{GeV} \\ & m(\tilde{k}_1^0) < 400 \ \text{GeV} \\ & cr(NLSP) < 0.1 \ nm \\ & m(\tilde{k}_1^0) < 950 \ \text{GeV}, \ cr(NLSP) < 0.1 \ nm, \ \mu > 0 \\ & m(NLSP) < 400 \ \text{GeV} \\ & m(NLSP) < 30 \ \text{GeV} \\ & m(\tilde{G}) > 1.8 \times 10^{-4} \ eV, \ m(\tilde{g}) = m(\tilde{q}) = 1.5 \ TeV \end{split}$</td> <td>1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518</td>	1.85 TeV 1.57 TeV 2.02 TeV 2.01 TeV 1.7 TeV 1.6 TeV 2.0 TeV 1.65 TeV 1.65 TeV 1.8 TeV	$\begin{split} & m(\tilde{q}) = m(\tilde{g}) \\ & n(\tilde{k}_1^0) < 200 \ \text{GeV}, \ m(1^{16} \ \text{gen.} \ \tilde{q}) = m(2^{md} \ \text{gen.} \ \tilde{q}) \\ & m(\tilde{q}) + n(\tilde{k}_1^0) < 5 \ \text{GeV} \\ & m(\tilde{k}_1^0) < 200 \ \text{GeV} \\ & m(\tilde{k}_1^0) < 200 \ \text{GeV}, \ m(\tilde{k}^{\pm}) = 0.5 (m(\tilde{k}_1^0) + m(\tilde{g})) \\ & m(\tilde{k}_1^0) < 400 \ \text{GeV} \\ & m(\tilde{k}_1^0) < 400 \ \text{GeV} \\ & cr(NLSP) < 0.1 \ nm \\ & m(\tilde{k}_1^0) < 950 \ \text{GeV}, \ cr(NLSP) < 0.1 \ nm, \ \mu > 0 \\ & m(NLSP) < 400 \ \text{GeV} \\ & m(NLSP) < 30 \ \text{GeV} \\ & m(\tilde{G}) > 1.8 \times 10^{-4} \ eV, \ m(\tilde{g}) = m(\tilde{q}) = 1.5 \ TeV \end{split}$	1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
3 rd gen. ẽ med.	$\begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} {\rightarrow} b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} {\rightarrow} t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} {\rightarrow} b \bar{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	ř ř ř	1.92 TeV 1.97 TeV I.37 TeV	m(x̃ ⁰ ₁)<600 GeV m(x̃ ⁰ ₁)<200 GeV m(x̃ ⁰ ₁)<300 GeV	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
3 rd gen. squarks direct production	$ \begin{array}{l} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{+} \\ \tilde{r}_{1}\tilde{r}_{1}, \tilde{r}_{1} \rightarrow b\tilde{\chi}_{1}^{+} \\ \tilde{r}_{1}\tilde{r}_{1}, \tilde{r}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1}, \tilde{r}_{1} \rightarrow c\tilde{\chi}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1}, \tilde{r}_{1} \rightarrow c\tilde{\chi}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1} (natural GMSB) \\ \tilde{r}_{2}\tilde{r}_{2}, \tilde{r}_{2} \rightarrow \tilde{r}_{1} + Z \\ \tilde{r}_{2}\tilde{r}_{2}, \tilde{r}_{2} \rightarrow \tilde{r}_{1} + h \end{array} $	0 2 e, μ (SS) 0-2 e, μ 0-2 e, μ 0 2 e, μ (Z) 3 e, μ (Z) 1-2 e, μ	2 b 1 b 1-2 b 0-2 jets/1-2 b mono-jet 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes Yes	3.2 13.2 1.7/13.3 20.3 3.2 20.3 36.1 36.1	Š1 840 GeV Š1 325-685 GeV Ĩ1 117-170 GeV 200-720 GeV Ĩ1 90-198 GeV 205-950 GeV Ĩ1 90-323 GeV 1 Ĩ1 200-720 GeV 1 Î1 90-323 GeV 1 Î1 90-323 GeV 1 Î2 290-790 GeV 1 Î2 320-880 GeV 1		$\begin{split} & m(\tilde{x}_1^0){<}100~GeV \\ & m(\tilde{x}_1^0){<}150~GeV, m(\tilde{x}_1^{-1}){=}m(\tilde{x}_1^0){+}100~GeV \\ & m(\tilde{x}_1^{-1}){=}2m(\tilde{x}_1^0), m(\tilde{x}_1^0){=}55~GeV \\ & m(\tilde{x}_1){-}m(\tilde{x}_1^0){=}5~GeV \\ & m(\tilde{x}_1){-}m(\tilde{x}_1^0){=}5~GeV \\ & m(\tilde{x}_1^0){=}0~GeV \\ & m(\tilde{x}_1^0){=}0~GeV \\ & m(\tilde{x}_1^0){=}0~GeV \end{split}$	1606.08772 ATLAS-CONF-2016-037 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2017-020 1604.07773 1403.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
EW direct	$ \begin{split} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{*} \tilde{\chi}_{1}^{*}, \tilde{\chi}_{1}^{*} \rightarrow \tilde{\ell}_{V} (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{*} \tilde{\chi}_{1}^{*}, \tilde{\chi}_{1}^{*} \rightarrow \tilde{\tau}_{V} (\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{*} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{1}^{*} \chi_{\ell}^{0} (\ell \tilde{\nu}), \ell \tilde{\nu}_{\ell}^{*} \ell (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{*} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{*} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \Lambda \tilde{\chi}_{1}^{*}, h \rightarrow b \tilde{b} / W W \\ \tilde{\chi}_{2}^{*} \tilde{\chi}_{3}, \tilde{\chi}_{2,3}^{*} \rightarrow \tilde{R}_{\ell}^{\ell} \\ \text{GGM (bino NLSP) weak proc} \\ \text{GGM (bino NLSP) weak proc} \end{split} $	$\begin{array}{c} 4 \ e, \mu \\ d. 1 \ e, \mu + \gamma \end{array}$	0 0 0-2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 14.8 13.3 20.3 20.3 20.3 20.3 20.3 20.3			$\begin{array}{l} m(\tilde{k}^{2}_{1}^{0}){=}0 \mbox{ GeV }\\ \mbox{GeV, $m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{k}^{2}_{1}^{+}){+}m(\tilde{k}^{0}_{1}^{0}))$\\ $m(\tilde{k}^{2}_{1}^{0}){=}0 \mbox{ GeV, $m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{k}^{2}_{1}^{+}){+}m(\tilde{k}^{0}_{1}^{0}))$\\ $m(\tilde{k}^{2}_{1}^{0}){-}m(\tilde{k}^{2}_{1}^{0}){=}0.7(m(\tilde{k}^{2}_{1}){+}m(\tilde{k}^{2}_{1}^{0}))$\\ $m(\tilde{k}^{2}_{1}^{1}){=}m(\tilde{k}^{2}_{2}^{0}){,} $m(\tilde{k}^{0}_{1}^{0}){=}0.7(decoupled)$\\ $m(\tilde{k}^{2}_{1}^{0}){-}m(\tilde{k}^{2}_{2}^{0}){=}0.5(m(\tilde{k}^{2}_{2}^{0}){+}m(\tilde{k}^{2}_{1}^{0}))$\\ $\mathfrak{cr}{<}1$ mm $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	1403.5294 ATLAS-CONF-2016-096 ATLAS-CONF-2016-093 ATLAS-CONF-2016-096 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493 1507.05493
Long-lived particles	Direct $\tilde{X}_1^+ \tilde{X}_1^-$ prod., long-lived Direct $\tilde{X}_1^+ \tilde{X}_1^-$ prod., long-lived Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{X}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) +$ GMSB, $\tilde{X}_1^0 \rightarrow \gamma \tilde{G}$, long-lived \tilde{X}_1^0 $\tilde{g}_{\tilde{g}}, \tilde{X}_1^0 \rightarrow e e^{-i\rho} (e^{-i\rho}) + \rho e^{-i\rho} $	$ \begin{array}{ccc} \tilde{\chi}_1^{\pm} & {\rm dE/dx \ trk} \\ & 0 \\ & {\rm trk} \\ {\rm dE/dx \ trk} \\ \tau(e,\mu) & 1{-}2 \ \mu \end{array} $	1-5 jets - - - - - -	Yes Yes - - Yes - Yes	36.1 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	\$\vec{x}_1^+\$ 430 GeV \$\vec{x}_1^+\$ 495 GeV \$\vec{x}_1^-\$ 850 GeV \$\vec{x}_1^-\$ 850 GeV \$\vec{x}_1^-\$ 537 GeV \$\vec{x}_1^0\$ 537 GeV \$\vec{x}_1^0\$ 440 GeV \$\vec{x}_1^0\$ 1.0 Te' \$\vec{x}_1^0\$ 1.0 Te'	1.58 TeV 1.57 TeV	$\begin{split} & m(\tilde{k}_1^1) - m(\tilde{k}_1^0) - 160 \; \text{MeV}, \tau(\tilde{k}_1^1) = 0.2 \; \text{ns} \\ & m(\tilde{k}_1^1) - m(\tilde{k}_1^0) - 160 \; \text{MeV}, \tau(\tilde{k}_1^1) < 15 \; \text{ns} \\ & m(\tilde{k}_1^0) = 100 \; \text{GeV}, 10 \; \mu \text{s} < \tau(\tilde{k}) < 1000 \; \text{s} \\ & m(\tilde{k}_1^0) = 100 \; \text{GeV}, \tau > 10 \; \text{ns} \\ & 10 < \tan \beta < 50 \\ & 1 < \tau(\tilde{k}_1^0) < 3 \; \text{ns}, \; \text{SPS8 model} \\ & 7 < \operatorname{cr}(\tilde{k}_1^0) < 740 \; \text{mm}, \; m(\tilde{k}) = 1.3 \; \text{TeV} \\ & 6 < \operatorname{cr}(\tilde{k}_1^0) < 400 \; \text{mm}, \; m(\tilde{k}) = 1.1 \; \text{TeV} \end{split}$	ATLAS-CONF-2017-017 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162
RPV	$ \begin{array}{c} LFV pp \rightarrow \bar{v}_{\tau} + X, \bar{v}_{\tau} \rightarrow e\mu/e\tau/\mu \\ Bilinear \ RPV \ CMSSM \\ \bar{X}_1^* \bar{X}_1^-, \bar{X}_1^+ \rightarrow W \bar{X}_1^0, \bar{X}_1^0 \rightarrow eev, e\mu\nu \\ \bar{X}_1^+ \bar{X}_1^-, \bar{X}_1^+ \rightarrow W \bar{X}_1^0, \bar{X}_1^0 \rightarrow \tau\tau\nu_e, e\tau \\ \bar{g} \bar{s}, \bar{s} \rightarrow qq \\ \bar{g} \bar{s}, \bar{g} \rightarrow qq \bar{X}_1^0, \bar{X}_1^0 \rightarrow qqq \\ \bar{g} \bar{s}, \bar{g} \rightarrow \bar{q} \bar{X}_1^0, \bar{X}_1^0 \rightarrow qqq \\ \bar{g} \bar{s}, \bar{g} \rightarrow \bar{q} \bar{X}_1^0, \bar{X}_1^0 \rightarrow qqq \\ \bar{g} \bar{s}, \bar{g} \rightarrow \bar{q} \bar{X}_1^0, \bar{X}_1^0 \rightarrow qqq \\ \bar{g} \bar{s}, \bar{g} \rightarrow \bar{q} \bar{X}_1^0, \bar{X}_1^0 \rightarrow qqq \\ \bar{g} \bar{s}, \bar{g} \rightarrow \bar{q} \bar{s} \bar{\lambda}_1 \bar{\lambda}_1, \bar{\lambda}_1 \rightarrow bs \\ \bar{t}_1 \bar{t}_1, \bar{t}_1 \rightarrow bs \\ \bar{t}_1 \bar{t}_1, \bar{t}_1 \rightarrow b\ell \end{array} $	$\begin{array}{c} 2 \ e, \mu \ (\text{SS}) \\ s, \mu\mu\nu & 4 \ e, \mu \\ \gamma_{\tau} & 3 \ e, \mu + \tau \\ & 0 & 4 \\ & 0 & 4 \\ & 1 \ e, \mu \end{array}$	- -5 large- <i>R</i> je -5 large- <i>R</i> je 3-10 jets/0-4 3-10 jets/0-4 2 jets + 2 <i>b</i> 2 <i>b</i>	ts - b - b -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 20.3	x ¹ / ₁ 450 GeV	1.9 TeV 1.45 TeV eV V 1.55 TeV 2.1 TeV 1.65 TeV	$ \begin{split} & \lambda_{111}'=0.11, \lambda_{132/133/233}=0.07 \\ & m(\tilde{q})=m(\tilde{g}), c\tau_{LSF}<1 \text{ mm} \\ & m(K_1^0)>400 \text{GeV}, \lambda_{12k}\neq 0 \ (k=1,2) \\ & m(K_1^0)>0.2\times m(\tilde{K}_1^1), \lambda_{133}\neq 0 \\ & \text{BR}(t)=\text{BR}(k)=\text{BR}(c)=0\% \\ & m(\tilde{K}_1^0)=800 \text{ GeV} \\ & m(\tilde{K}_1^0)=1 \text{ TeV}, \lambda_{112}\neq 0 \\ & m(\tilde{t}_1)=1 \text{ TeV}, \lambda_{323}\neq 0 \\ & \text{BR}(\tilde{t}_1\rightarrow be/\mu)>20\% \end{split} $	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2016-084 ATLAS-CONF-2015-015
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i>	Yes	20.3	č 510 GeV		m($ ilde{\chi}_1^0$)<200 GeV	1501.01325
phér	a selection of the availab nomena is shown. Many c lified models, c.f. refs. for	of the limits are	e based o	n	or 1	0 ⁻¹		Mass scale [TeV]	

ATLAS RRB Meeting, 25th April 2017 "The 2 TeV line has been reached for some scenarios" 16

Search for Dark Matter

- Search in final states containing an energetic photon and large E_T^{miss} (2015+2016) dataset: 36.1 fb⁻¹ at $\sqrt{s} = 13$ TeV
- No excess above expectations from Standard model processes observed
 → Interpretation in Simplified Dark Matter models (Dirac fermion DM, s-channel mediator with vector / axial-vector couplings) → Excluded regions (m_{med} versus m_y)
 - → Interpretation in excluded χ -proton spin-dependent and spin-independent scattering cross sections for different mediator models → link to direct DM search experiments

Interesting limits obtained, extend to low masses of Dark matter particles

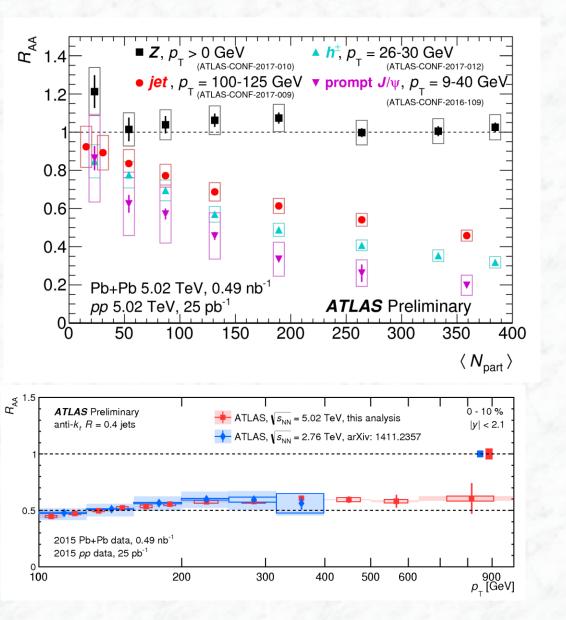


med

Heavy Ion Physics in ATLAS

 Evidence for light-by-light scattering γγ → γγ in 5 TeV Pb-Pb collision data (2015) (submitted to Nature Physics, arXiv:1702.01625)

 At Quark Matter 2017: – 11 preliminary results (conference notes), including 8 TeV p-Pb collision data


 2 journal papers

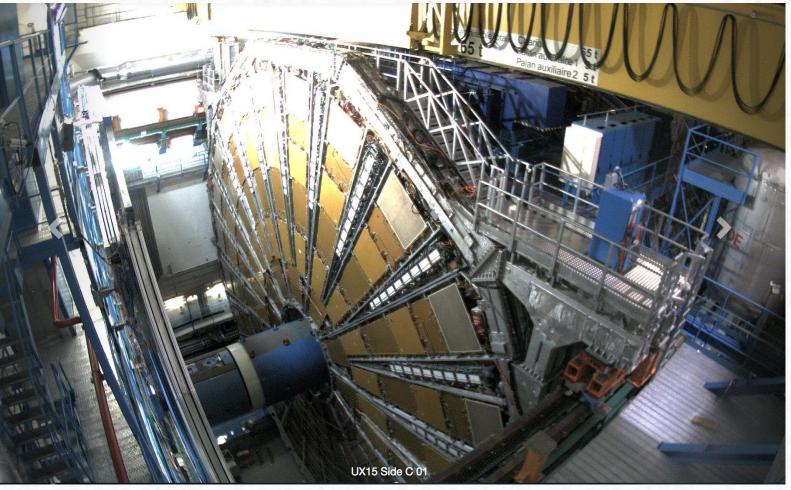
Main highlights: Jet production, flow in small system

ATLAS RRB Meeting, 25th April 2017

Results on Heavy Ion Physics in ATLAS

$$R_{AA} = \frac{I}{N_{PbPb}}$$

 Strongly interacting particles are increasingly suppressed as the density of the nuclear medium increases


 With Run-2 data, jets up to p_T~1 TeV can be assessed

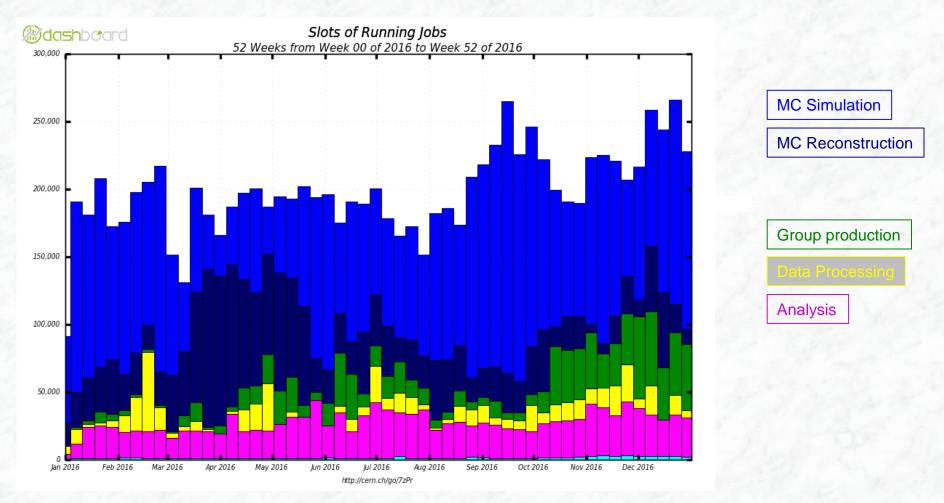
Work during Extended Year End Technical Stop (EYETS)

Side C 4th April 2017

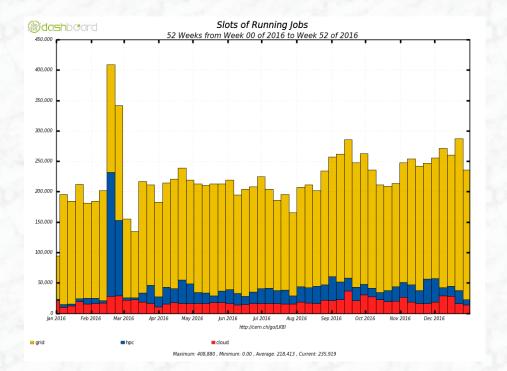
The 2017 EYETS programme has been successfully completed;

ATLAS is ready for data taking in 2017

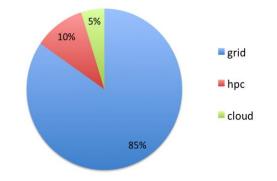
(more details in the talk by Ludovico Pontecorvo)


ATLAS RRB Meeting, 25th April 2017

Computing


As always, the WLCG has been fundamental to ATLAS physics analysis

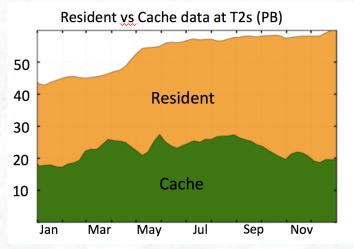
- Fully leverage all pledged resources
- Aggressively use non-pledged CPU resources



Computing (cont.)

<figure>



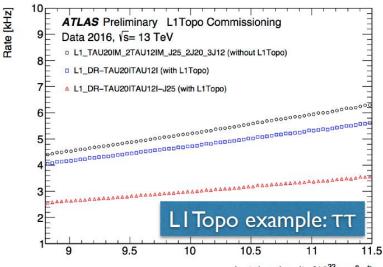

- Increasing opportunistic use of clouds and HPCs (~15%); HPCs especially for event generators and Monte Carlo production;
- Integration of non-Grid resources in ATLAS is a big investment with a big return

Resources are needed in Run 2 to exploit the excellent LHC performance, which is expected to continue

- Tier-1 and Tier-2 CPU fully used, supplemented by opportunistic resources
- Tier-1 and Tier-2 disks are full Aggressive use of "lifetime" deletion model
- Reprocessing of 2015+2016 data with new release
- In addition: more Monte Carlo events are needed
- ATLAS has taken measures to optimize resources, e.g. reduce AOD, DAOD file sizes, or speed-up of simulation (→ next slides)
- ATLAS relies on development of tools to exploit new computing resources

Thanks to the continuous strong Computing support; ATLAS' success relies heavily on it !

ATLAS RRB Meeting, 25th April 2017


24

Trigger and DAQ: getting ready for 2 •10³⁴ cm⁻² s⁻¹

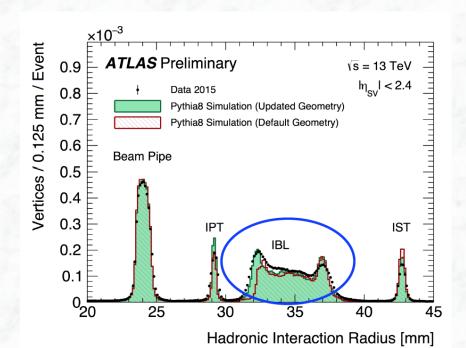
Level 1: Topological Trigger

- Apply real-time kinematic and angular cuts at L1 → reduction of L1 rate, critical for high-luminosity running
- Hardware stable for a year, expanded menu and firmware for 2017 ready
- High-Level Trigger
 - Keep thresholds as low as possible
 - Work done to reduce HLT CPU use by 15-20%
- Operation of the Inner Detector (Tracking) at high luminosity
 - Significant upgrade of readout hardware (Pixel DAQ)
 - Inner Detector can run at 100 kHz and pile-up level up to μ ~ 60 (~ 2 $10^{34}\,cm^{-2}\,s^{-1})$

Inst. Luminosity [1033 cm2s1]

Simulation and Reconstruction

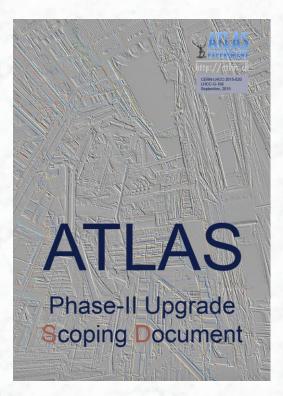
ATLAS EXPERIMENT

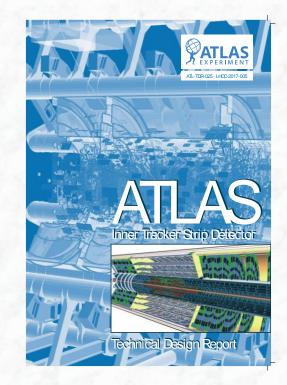

- Software for Run 2: Release 21
 - Release 21 commissioned and validated
 Stable release for Run 2 → reprocessing of earlier Run-2 data

Simulation

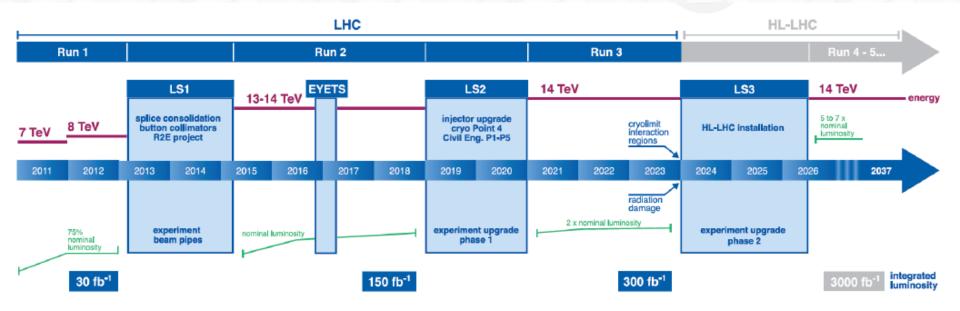
- 15% speed-up w.r.t. previous release for full detector simulation (incl. new Geant4 version, updated geometry, ...)
- Further development of Fast Simulation is a high-priority item

Reconstruction


- Numerous changes and improvements to the software, calibration and alignment
- Content of reconstruction output (AOD) carefully optimized to reduce the size (20% for data)
 → helps to mitigate 2018 storage requests by moving some CPU-light reconstruction into the analysis-format building step (DAODs)



Phase-II Detector Upgrade

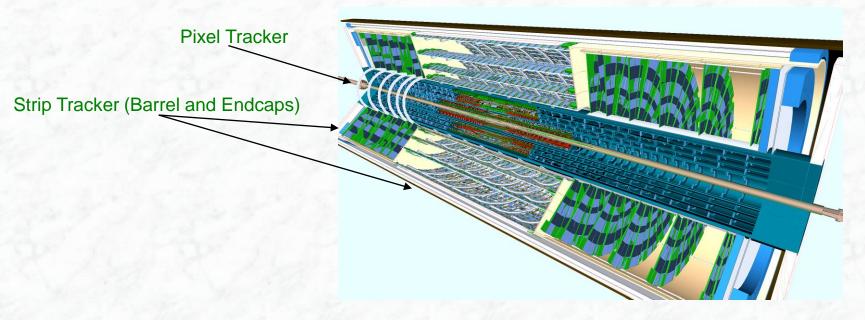

-From the Scoping Document to the Technical Design Reports-

LHC Schedule

Phase-I upgrades to be installed by end of LS2, i.e. end of 2020

- Parts already installed (LS1) or coming during Run 2 (FTK)
- Larger parts to come in LS2 (NSW, LAr electronics, L1 Calo, L1 Muon, and FELIX)
- 14 TeV running after LS2 (in Run 3)

Phase-II upgrades for installation in LS3 in 2024-2026

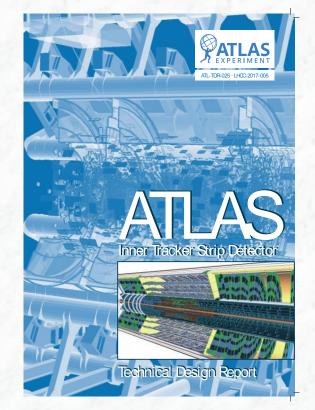

- TDR preparation in full swing
- R&D activities in all Phase-II areas

ITk: The new ATLAS Inner Tracker

Motivation:

- Replacement of the central tracking detector in ATLAS; Major component of the Phase-II upgrade, ~50% of the total cost
- Essential to manage radiation damage and instantaneous luminosity at HL-LHC
- Layout Task Force has converged on a silicon pixel (5 layers in the barrel) + silicon strip (4 outer layers in the barrel) system;
 Pixel system is confined to a cylinder around the beam pipe, R = 34.5 cm

ITk: The new ATLAS Inner Tracker (cont.)


Status of the ITk Strip Detector TDR:

• The first Phase-II TDR, covering the outer part of the tracker (based on Silicon Strips) has been submitted to the LHCC

550 pages, printed copies available for RRB

- LHCC has given preliminary approval at its meeting in February 2017
 "ITk strip tracker as proposed is a sound design and, with the pixels system being considered, addresses the tracker performance required for HL-LHC. No show stoppers were identified."
- Next step: Approval by Upgrade Cost Group (UCG)

Separate UCG material for cost, schedule, risk and resources was submitted in Jan 2017; Updated version submitted on 9th April 2017

ITk: The new ATLAS Inner Tracker (cont.)

 In-depth UCG review (chaired by Stewart Smith) planned for 8th/9th May 2017 (beginning of next LHCC week)

Very detailed review, on costs (uncertainties, quality factors), schedule, sharing of work, resources (at institutes), and risk analysis

Present cost estimates: 60 MCHF in Strip Tracker, 40 MCHF in Pixel Tracker, 20 MCHF in Common ITk Items. (total in agreement with estimates given in the Scoping Document for the inner tracker system in the reference scenario)

ITk is a central and essential part of the Upgraded ATLAS detector
 → no large cost saving or down-scoping possible (especially not for strip detector)

- Hope to get approval by UCG and LHCC, followed by approval of CERN Research Board on 9th June 2017
- Prepare iMoU for final ASIC and sensor prototypes in 2017/18 for ITk Strip detector
- Second part of the ITk TDR (Pixel detector system) will be finalized in Dec 2017

Remaining Elements of ATLAS Phase-II upgrade

- Every major system in ATLAS requires significant upgrades for HL-LHC
- The Phase-I upgrades form the foundation for Phase-II upgrades
- The TDRs will be finalized throughout this year

Muon Spectrometer

Electronics replacements, plus upgrade of chambers in the inner barrel layer TDR submission: 30th June 2017

Calorimeters

- Electronics replacements for LAr and Tile calorimeters;
- ATLAS decided not to upgrade the forward calorimeter (sFCAL);
 (-10 MCHF w.r.t reference scenario in Scoping Document)

 High Granularity Timing Detector (HGTD) in forward region seriously considered; R&D progressing well; Internal review to decide whether to proceed to TDR planned for Sept 2017; If agreed, HGTD will be presented in preliminary form in the LAr TDR and followed up with a separate TDR in 2018

TDR submission: 30th September 2017

ATLAS RRB Meeting, 25th April 2017

Remaining Elements of ATLAS Phase-II upgrade

Trigger and DAQ

Major upgrade of Trigger and DAQ systems to provide more than a factor of ten increase in trigger rate capability

TDR submission: 15th December 2017

(together with ITk Pixel detector TDR)

Update on Phase-II TDR Approval Process

We are planning for convergence of the scientific/technical reviews of all Phase-II projects (complete program) in the first half of 2018

Target date: RRB in April 2018

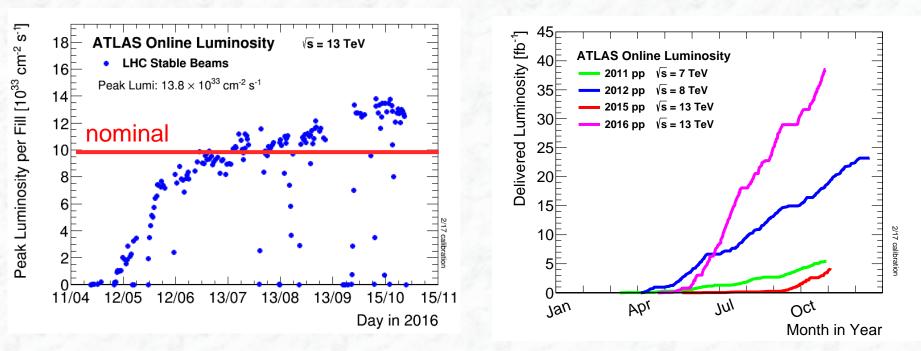
- ATLAS clearly prefers the "Fast Forward" review schedule (however, we are not suggesting to reduce the level of scrutiny; this probably calls for an optimization of the review process and more reviewers)
 - We consider this critical to achieve readiness for LS3 installation
 - First CORE money has to be spent during 2017/18 and this will require (i)MoUs

- ATLAS continues to produce high-quality physics results
 - Precision phase entered on some measurements, e.g m_W
 - Results for many searches for BSM physics are based on complete Run-2 dataset
 - Aim for updates on Higgs boson studies and parameter measurements for Summer 2017
- Detector Consolidation successfully mastered during Extended Year End Technical Stop
 → ATLAS is ready for Data Taking in 2017
- First Technical Design Report (ITk Strip detector) presented and first approval steps taken; They will be followed by the submission of the remaining Phase-II TDRs throughout 2017

We have an intense year ahead of us!

The strong support of the ATLAS Funding Agencies over the last decades has been, and continues to be, fundamental to the success of the experiment

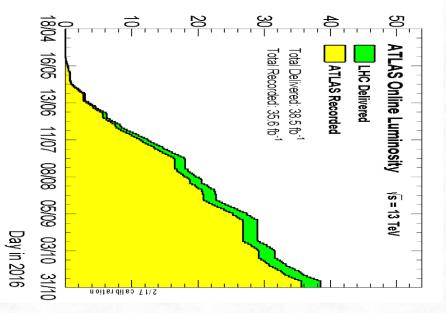
Thank you!



Backup Slides

ATLAS RRB Meeting, 25th April 2017

Recall of the excellent 2016 LHC performance



- Excellent LHC performance in 2016 at $\sqrt{s} = 13$ TeV
- Peak luminosities ~ 1.4 10³⁴ cm⁻² s⁻¹
- High level of pileup: mean of ~25 interactions / beam crossing in 2016

Recall of the excellent 2016 ATLAS performance

Total Integrated Luminosity [fb-1]

ATLAS pp 25ns run: April-October 2016

Inner Tracker			Calori	meters	Muc	on Spe	ctrom	eter	Magn	Trigger	
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid	L1
98.9	99.9	99.7	99.3	98.9	99.8	99.8	99.9	99.9	99.1	97.2	98.3

Good for physics: 93-95% (33.3-33.9 fb⁻¹)

Luminosity weighted relative detector uptime and good data quality efficiencies (in %) during stable beam in pp collisions with 25ns bunch spacing at \sqrt{s} =13 TeV between April-October 2016, corresponding to an integrated luminosity of 35.9 fb⁻¹. The toroid magnet was off for some runs, leading to a loss of 0.7 fb⁻¹. Analyses that don't require the toroid magnet can use that data.

- Data taking efficiency: 92.4 % (even with peak luminosity well above LHC design)
- High operational fractions for all detector systems
- High data quality: Integrated luminosity good for physics: 33.3 33.9 fb⁻¹

LHC Schedule 2017

Approved by the Reseach Board, 8 March 2017

			ntrols ventions	Feb							Controls interventions Mar 12:00 - 14:00			Start powering tests phase 1	
Wk	1		2	3	4	5	6	7	8	9	10	11	12	13	
Мо	2		9	16	23	30	6	13	20	27	6	13	20	27	
Tu		↓	,												
We											_	┢────			
Th							Т	echnical stop	o (EYETS)						
Fr														*	
Sa															
Su															

	Apr	LHO	C to OP			May				-	Jun	е		2	1.3
Wk	14		15	16	17	18	19	20	21	22	23		24	25	26
Мо		3	10	Easter Mon 17	24	1st May 1	٤	3 15	22	29	Whit		12	run	19 26
Tu														physic	
We					ort							ing		Special p	
Th					checkout				Ascension			ubbing.		Spe	
Fr		G	6. Friday									Scri			MD 1
Sa					Machine		Re	ecommissior with beam	_						
Su					M										

First collisions may come in week 22, i.e. 29th May 2017

ATLAS RRB Meeting, 25th April 2017

	July				Aug		Sep							
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39	
Мо	3	10	17	24		7	14	21	28	4	11	18	25	
Tu					physic									
We	TS1				cial							TS2		
Th					Spe					Jeune G				
Fr											MD 2			
Sa														
Su														

	Oct		2	Set.	Nov	1	End of run ^[06:00] Dec							
Wk	40	41	42	43	44	45	46	47	48	49	50	51	52	
Мо	2	9	16	23	30	6	13	20	27	4	¥ 11	18	25	
Tu														
We				MD 3							Technical	stop (YETS)		
Th											reennear	300 (1213)		
Fr														
Sa														
Su														

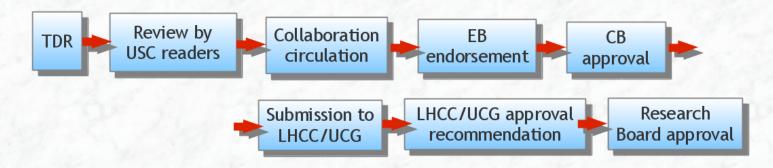
Technical Stop

Machine development

Special physics runs (indicative - schedule to be established)

Scrubbing (indicative - dates to be established)

Remaining Elements of ATLAS Phase-II upgrade (cont.)



Present Status:

Internal process (IDR = Initial Design Reviews) and Kick-off meetings for all Phase-II
projects have been completed

- → ATLAS formal approval of scope and status of projects to proceed to complete and submit their TDRs.
- Remaining projects (Pixel part of ITk, LAr and Tile calorimeters, Muon spectrometer, and TDAQ system) working on TDRs, with submissions targeting the LHCC weeks in Sept. 2017, Nov. 2017 and Feb. 2018.

ITk: The new ATLAS Inner Tracker (cont.)

Details on UCG review (chaired by Stewart Smith, Princeton), planned for 8./9. May 2017:

0845 0905	(15 +5) (15 +5)	Overall ITk Project Overview and Organization Strip Project Organization
0925 0940	(10 +5) (10 +5)	Common Mechanics: WBS and current best estimate of sub-project cost Common Electronics: WBS and current best estimate of sub-project cost
0955 1020 1045	(15 +10) (15 +10) (15)	Pixel Detector: WBS and current best estimate of sub-project cost Strip Sensors (2.2.1) Break
1100	(10 +10)	Strip ASICs (2.2.2)
1120	(15 +10)	Strip Modules (2.2.3)
1145	(10 +10)	Strip Local Support Electronics and Off-Detector Electronics (2.2.4 + 2.2.9)
1205	(10 +10)	Strip Local Supports (2.2.5)
	(10 +10)	Strip Global Mechanics, Services, and Integration (2.2.6-2.2.8)
1245	(20)	Discussion
1400	Breakout sessi	ons
Session		
	n II a. (1400 –	
	n II b. (1530 –	
Session		1600) Local Support Mechanics, Global Mechanics, Services and Integration1700) Common Electronics, Common Mechanics and Pixels)