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Abstract. We investigate higher derivative corrections in M-theory by applying Noether’s method.
Cancellation of variations, which contain linear terms in 4-form field strength, under local super-
symmetry is executed with the aid of computer programming. Structure of R

4 terms is uniquely
determined and exactly matches with one-loop effective terms in type IIA superstring theory.

PACS. 11.25.Yb M-theory – 11.30.Pb Supersymmetry

1 Introduction

Superstring theory is promising as a theory of quan-
tum gravity, and interactions of strings are described
by supergravity in the low energy limit[1,2]. Scatter-
ing amplitudes of strings also contain higher derivative
interactions which give stringy or quantum corrections
to supergravity[2].

Among the higher derivative terms, quartic terms
of Riemann tensor, R4 terms, in type II superstring
theories are considerably investigated in the last twenty
years from various viewpoints. Especially tree level
effective action which include R4 terms is obtained
by combining results of scattering amplitude of four
gravitons and 4-loop computation in non-linear sigma
model[3,4]. Effective action at one-loop order also con-
tains the R4 terms. We will review some aspects of R4

terms in sect. 2.
By lifting the effective action in type IIA super-

string theory to 11 dimensions, higher derivative cor-
rections in M-theory are revealed. It is also possible
to directly confirm the existence of higher derivative
terms in eleven dimensions from the scattering ampli-
tudes of superparticles[5,6,7,8] or superspace formalism[9,
10,11,12,13].

Without relying on scattering amplitudes, higher
derivative corrections in superstring theories are de-
termined by imposing local supersymmetry[14,15,16,
17,18,19,20]. This paper is a summary of works of refs.
[18,19,20]. The structure of higher derivative terms in
M-theory is investigated by applying Noether’s method.
Variations under local supersymmetry which are lin-
early dependent on 4-form field strength are cancelled
with the aid of a computer programming1. We will see
that the local supersymmetry is powerful enough to

a
Email: hyaku@het.phys.sci.osaka-u.ac.jp

1 I employed mathematica code, GAMMA.m, built by U.
Gran[21].

determine the structure of R4 terms uniquely. A part
of R3F 2 terms is also determined.

The contents of our paper is as follows. In section
2, we briefly summarize higher derivative corrections
in type IIA superstring theory. In section 3, higher
derivative corrections in M-theory are investigated via
local supersymmetry. We find that the structure of R4

terms is uniquely determined and is consistent with
one-loop scattering amplitudes in type IIA superstring
theory. Section 4 is devoted to conclusions and discus-
sions.

2 Higher Derivative Corrections in Type

IIA Superstring Theory

It is well known that the low energy limit of super-
string theory is described by supergravity. This can
be shown explicitly by calculating the scattering am-
plitudes of massless states. For example, low energy
limit of amplitude of three gravitons at tree level cor-
rectly reproduces three points vertex of gravitons in
the supergravity Lagrangian.

Scattering amplitudes of massless states in super-
string theory, however, include corrections to the su-
pergravity Lagrangian. These terms contain positive
power of string length ℓs and string coupling constant
gs, and are called higher derivative corrections. In type
IIA superstring theory, one of those corrections appear
in amplitude of four gravitons which is written by

Mtree
4 = −

1

2κ2
10

ℓ6s
29 · 4!

T (s, t, u) t8t8R
4. (1)

Here 2κ2
10 = (2π)7ℓ8sg

2
s , t8 is composed of 4 Kronecker

deltas, and t8t8R
4 is an abbreviation of a product of

two t8 tensors and four Riemann tensors. Explicit ex-
pression can be found in ref. [19]. T (s, t, u) is a function
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of Mandelstam variables and defined by using gamma
functions as

T (s, t, u) =
Γ (−

ℓ2
s

4
s)Γ (−

ℓ2
s

4
t)Γ (−

ℓ2
s

4
u)

Γ (1 +
ℓ2

s

4
s)Γ (1 +

ℓ2
s

4
t)Γ (1 +

ℓ2
s

4
u)

∼
26

ℓ6sstu
+ 2ζ(3) + · · · . (2)

The second line in the above equation gives the low
energy limit of the amplitude. The first term in that
line just corresponds to amplitudes of exchanging four
gravitons in s, t and u channels in type IIA supergravity[22].
The second term contain a Riemann zeta function ζ(3),
which is irrational, and contributes as a stringy cor-
rection to the supergravity. In this way it is basically
possible to derive higher derivative corrections from
string scattering amplitudes, and terms which involve
fourth power of Riemann tensors become

Ltree = −
e−2φ

2κ2
10

ℓ6s
28 · 4!

ζ(3)

×
(

t8t8R
4 + 1

4·2!
ǫ10ǫ10R

4
)

. (3)

The second term is first derived by calculations in non-
linear sigma model[4]. By counting mass dimensions,
we see that above Lagrangian should be order of ℓ6s.

At 1-loop level, 0, 1, 2, 3 points amplitudes of mass-
less states are zero, and higher derivative corrections
first arise out of amplitude of four gravitons.

M
1-loop
4 =

1

2κ2
10

πg2
sℓ

6
s

28 · 4!
I(s, t, u) t8t8R

4. (4)

I(s, t, u) is an integral of a modular function on a torus
and approximated in the low energy limit as

I(s, t, u) ∼
π

3
. (5)

Finally the effective action which contain fourth power
of Riemann tensor at 1-loop level become

L1-loop =
1

2κ2
10

ℓ6s
28 · 4!

π2

3
g2

s (6)

×
(

t8t8R
4 − 1

4·2!
ǫ10ǫ10R

4 − 1
6
ǫ10t8BR

4
)

.

The last term comes from 5 points amplitude of anti-
symmetric tensor field and 4 gravitons. Note that the
signs in front of ǫ10ǫ10R

4 are opposite. Those are sen-
sitive to the chirality of the theory.

So far we have concentrated on terms which involve
fourth power of the Riemann tensor. Compared with
gravitons, our knowledge on higher derivative terms
which consist of NS B field and R-R potentials is poor.
In order to determine these terms, it is necessary to
calculate more than 5 points amplitudes and extract
their low energy limit correctly. This is very tough
work. In the next section we consider higher deriva-
tive corrections in M-theory and try to determine the
structure of these terms only by employing local su-
persymmetry.

3 Higher Derivative Corrections in

M-theory

The string coupling constant in type IIA superstring
theory is identified with 11th circular direction with
a radius R = gsℓs, and strong coupling limit of this
theory is described by 11 dimensional M-theory. The
low energy limit of M-theory is described by 11 di-
mensional supergravity, and gravity multiplet consists
of a vielbein ea

µ, a 3-form field A and a Majorana
gravitino ψµ. In M-theory a supermembrane plays a
fundamental role and often capture nonperturbative
aspects of superstring. However, quantization of su-
permenbrane is incomplete, so it is impossible to ob-
tain higher derivative terms by evaluating scattering
amplitudes of supermembranes.

Therefore we should employ another method to de-
termine the structure of higher derivative corrections
in M-theory. Since the gravity multiplet is simple, it
will be possible to fix the structure by local supersym-
metry. In this section we will apply Noether’s method
with the aid of computer programming, and show that
terms which involve fourth power of the Riemann ten-
sor, which are abbreviated as [eR4], can be determined
uniquely.

First let us classify independent terms in [eR4].
Here we only consider terms which do not contain
Ricci tensors or scalar curvatures. Because of this re-
striction, four indices of one Riemann tensor should
be contracted with those of other Riemann tensors.
Then it is convenient to consider a 4 × 4 symmetric
matrix whose (i, j) component represent a number of
contracted indices between i-th and j-th Riemann ten-
sors. The sum of each column should be 4, which is
the number of indices in the Riemann tensor, and the
symmetric matrix is controlled by two parameters as







0 a b 4 − a− b
a 0 4 − a− b b
b 4 − a− b 0 a

4 − a− b b a 0






, (7)

where 0 ≤ a, b, a + b ≤ 4. Without loss of generality
we set 4 − a− b ≤ b ≤ a, since this is always possible
by properly exchanging positions of Riemann tensors.
Then it is easy to see that there are 4 possible matrices.







0 4 0 0
4 0 0 0
0 0 0 4
0 0 4 0






,







0 3 1 0
3 0 0 1
1 0 0 3
0 1 3 0






,







0 2 2 0
2 0 0 2
2 0 0 2
0 2 2 0






,







0 2 1 1
2 0 1 1
1 1 0 2
1 1 2 0






, (8)

Patterns of contractions of two Riemann tensors are
considerably restricted by the properties of the Rie-
mann tensor, and possible expressions are given by

RabcdRabcd, RabcxRabcx,

RabxxRabxx, RaxbxRaxbx, (9)

where x represents a blank and a, b, c and d are con-
tracted indices. By using the properties of the Rie-
mann tensor we see that there are 7 independent terms
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in [eR4].

RabcdRabcdRefghRefgh, RabcgRabchRdefgRdefh,

RabcdRabefRcdghRefgh, RacbdRaebfRcgdhRegfh,

RabefRabghRcedgRcfdh, RabefRabghRcedgRchdf , (10)

RaebfRagbhRcedgRcfdh.

This procedure is systematic and it is possible to exe-
cute this by employing computer programming. In or-
der to supersymmetrize terms in [eR4], it is necessary
to add more possible terms in the effective action, and
the result by computer programming is summarized as

B1 = [eR4]7, B11 = [eǫ11AR
4]2,

F1 = [eR3ψ̄ψ2]92, F2 = [eR2ψ̄2Dψ2]25. (11)

Here ǫ11 is totally antisymmetric tensor in 11 dimen-
sions, and ψ2 represents a field strength of the Ma-
jorana gravitino. Each number in the subscript shows
that of independent terms. Details of these expressions
are found in ref. [19].

Supersymmetric transformations of massless fields
are the same as those of 11 dimensional supergravity,
and are abbreviated as[23]

δe = [ǭψ], δψ = [Dǫ], δA = [ǭψ]. (12)

ǫ is a parameter which belongs to a Majorana spinor
representation. Then variations of B1, B2, F1 and F2

are expanded by terms in 3 classes, V1, V2 and V3.

V1 = [eR4ǭψ]116,

V2 = [eR2DRǭψ2]88, (13)

V3 = [eR3ǭDψ2]40.

Then cancellation mechanism of these variations are
summarized in the following table.

δB1 = V1 ⊕ V2,

δB11 = V1,

δF1 = V1 ⊕ V2 ⊕ V3, (14)

δF2 = V2 ⊕ V3.

Local supersymmetry requires that the right hand side
in the above table should be zero. Thus we obtain 244
equations among 126 variables. After miraculous can-
cellation, the bosonic part is determined as

L = a
(

t8t8R
4 + 1

4!
ǫ11ǫ11R

4
)

+ b
(

t8t8R
4 − 1

4!
ǫ11ǫ11R

4 − 1
6
ǫ11t8AR

4
)

, (15)

where a and b are free parameters. The first line matches
with the result of tree level scattering amplitude (3),
and the second line is consistent with 1-loop amplitude
(6) in type IIA superstring theory.

So far we have neglected terms which involve 4-
form field strength. Thus the next step is to exam-
ine the invariance under local supersymmetry up to

O(F 2). In order to execute the cancellation to this or-
der, we have to add

B21 = [eR3F 2]30, B22 = [eR2(DF )2]24,

F11 = [eR3Fψ̄ψ]447, F12 = [eR2Fψ̄2ψ2]190, (16)

F13 = [eR2DFψ̄ψ2]614, F14 = [eRDFψ̄2Dψ2]113.

Variations of these terms are expanded by terms in 6
classes.

V11 = [eR2DRF ǭψ]1563, V12 = [eR3F ǭψ2]513, (17)

V13 = [eR3DFǭψ]995, V14 = [eRDRDF ǭψ2]371,

V15 = [eR2DFǭDψ2]332, V16 = [eR2DDFǭψ2]151.

Cancellation mechanism of variations which are linear
in F is summarized in the following table.

δB1 = V11,

δB11 = V11 ⊕ V13,

δF1 = V12 ⊕ V13,

δF2 = V12 V14 ⊕ V15,

δB21 = V11 ⊕ V13, (18)

δB22 = V14 ⊕ V16,

δF11 = V11 ⊕ V12 ⊕ V13,

δF12 = V12,

δF13 = V13 ⊕ V14 ⊕ V15 ⊕ V16,

δF14 = V14 ⊕ V15 ⊕ V16.

Requirement of local supersymmetry in (14) and (18)
gives 4169 equations among 1544 variables. From this
cancellation we obtain only one solution,

L = b
(

t8t8R
4 − 1

4!
ǫ11ǫ11R

4 − 1
6
ǫ11t8AR

4
)

+ ([R3F 2] ⊕ [R2(DF )2]). (19)

Therefore by imposing local supersymmetry, the struc-
ture of [eR4] is uniquely determined. The second line in
the above equation contain 2 parameters and explicit
forms will be reported elsewhere[20]. The coefficient b
is fixed by comparing with eq. (6).

b =
1

2κ2
11

ℓ6p

28 · 4!

π2

3
, (20)

where 2κ2
11 = (2π)8ℓ9p and ℓp = g

1/3
s ℓs.

4 Conclusions and Discussions

The higher derivative terms in M-theory are investi-
gated by applying Noether’s method. The cancellation
of the variations under local supersymmetry is exam-
ined to the order linear in the 4-form field strength F .
Since the calculations are hard, we heavily employed
the computer programming to check the cancellation.

The bosonic part of the ansatz consists of 63 terms,
B1, B11, B21 and B22, and the fermionic part of the
ansatz does of 1481 terms, F1, F2, F11, F12, F13 and
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F14. The variations of the ansatz are expanded by 4169
terms, V1, V2, V3, V11, V12, V13, V14, V15 and V16.
By requiring the cancellation of these variations, we
obtain 4169 linear equations among 1544 coefficients
in the ansatz. Then the coefficients of the bosonic
part is solved as eq. (19). Remarkably the structure
of the R4 terms is uniquely determined by the require-
ment of the local supersymmetry. This result exactly
matches with the fact that the one-loop effective ac-
tion in the type IIA superstring theory survives after
taking gs → ∞. When gs is finite, 11th direction is
compactified on the circle. Tree level R4 terms in type
IIA superstring theory arise after summing over non-
zero modes of Kaluza-Klein mass spectrum[6]. From
these arguments, we see that there is no term which
corresponds to amplitudes at 2-loop or more in type
IIA superstring theory. This gives proof of vanishing
theorem via local supersymmetry.

The result by computer programming shows that
R3F 2 terms are governed by two parameters. It is
interesting to compare the result with that obtained
by the scattering amplitudes in type IIA superstring
theory[25]. It is also important to check the consis-
tency to the result obtained by the other methods[13,
26,27].

As a conclusion the local supersymmetry seems to
determine the structure of the higher derivative cor-
rections in M-theory uniquely. Similar statement can
be found in the context of D-particle dynamics[28].
We will succeed the procedure executed in this paper
and determine the structure of the higher derivative
corrections in M-theory completely. After the determi-
nation of the action, corrections to black p-branes or
cosmology will become interesting future directions[29,
30,31].
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