A New Extension of the Standard Model

S. Nandi
Oklahoma State University

In collaboration with S. Gabriel

Talk presented at SUSY '07, Karlsruhe, Germany

Higgs Overview

-Responsible for breaking of electroweak gauge symmetry \rightarrow Gives mass to SM particles

- Mass bound: $\mathrm{m}_{\mathrm{h}}>114.4 \mathrm{GeV}$ (LEP)
-Dominant decay modes:

$$
b \bar{b}, W W, Z Z, t \bar{t}
$$

depending on the mass
-Experimentally, nothing currently known about Higgs sector

Two Higgs Doublet Models

- One doublet gives mass to up-type fermions only, the other to downtype fermions only. Motivated by SUSY
- Only one doublet couples to fermions, but both have VEV
-Only one doublet couples to fermions, and only that doublet has VEV. Motivation: Heavy Higgs, Higgs dark matter (Barbieri, Hall, and Rychkov)

Our Model

-One doublet gives mass to all SM fermions except neutrinos

- Other doublet gives mass only to neutrinos
-Gives an alternative explanation of small neutrino masses
- Symmetry $\mathrm{SM} \times \mathrm{Z}_{2}$
-Right-handed neutrinos N_{R} and two Higgs doublets X, φ
-SM fermions, X even under Z_{2}
$\cdot \mathrm{N}_{\mathrm{R}}, \varphi$ odd under Z_{2}
$\cdot\langle\chi\rangle \simeq 250 \mathrm{GeV}, \quad\langle\phi\rangle \sim 10^{-2}-1 \mathrm{eV}$
-Lepton Yukawa interactions:

$$
y_{l} \bar{\Psi}_{L}^{l} l_{R} \chi+y_{v_{l}} \bar{\Psi}_{L}^{l} N_{R} \tilde{\phi}+\text { h.c., } \quad \bar{\Psi}_{L}^{l}=\left(\bar{v}_{l}, \bar{l}\right)_{L}
$$

\rightarrow Neutrinos get tiny mass from breaking of Z_{2} symmetry

- Neutrinos are Dirac particles
\rightarrow No neutrino-less double beta decay

Higgs Potential:

$$
\begin{aligned}
& V=-\mu_{1}^{2} \chi^{\dagger} \chi-\mu_{2}^{2} \phi^{\dagger} \phi+\lambda_{1}\left(\chi^{\dagger} \chi\right)^{2}+\lambda_{2}\left(\phi^{\dagger} \phi\right)^{2} \\
& +\lambda_{3}\left(\chi^{\dagger} \chi\right)\left(\phi^{\dagger} \phi\right)-\lambda_{4}\left|\chi^{\dagger} \phi\right|^{2}-\frac{1}{2} \lambda_{5}\left[\left(\chi^{\dagger} \phi\right)^{2}+\left(\phi^{\dagger} \chi\right)^{2}\right]
\end{aligned}
$$

Physical Higgs Particles:
-Charged Higgs $\mathrm{H}^{+/}$

- Neutral pseudoscalar ρ
-Two neutral scalars h, σ

In Unitary Gauge:

$$
\begin{aligned}
& \chi=\frac{1}{\sqrt{2}}\binom{\sqrt{2} \frac{V_{\phi}}{V} H^{+}}{h_{0}+i \frac{V_{\phi}}{V} \rho+V_{\chi}} \\
& \phi=\frac{1}{\sqrt{2}}\binom{-\sqrt{2} \frac{V_{\chi}}{V} H^{+}}{\sigma_{0}-i \frac{V_{\chi}}{V} \rho+V_{\phi}}
\end{aligned}
$$

Higgs Masses:

$$
\begin{aligned}
& m_{H}^{2}=\frac{1}{2}\left(\lambda_{4}+\lambda_{5}\right) V^{2}, \quad m_{\rho}^{2}=\lambda_{5} V^{2} \\
& m_{h, \sigma}^{2} \\
& =\left(\lambda_{1} V_{\chi}^{2}+\lambda_{2} V_{\phi}^{2}\right) \\
& \quad \pm \sqrt{\left(\lambda_{1} V_{\chi}^{2}-\lambda_{2} V_{\phi}^{2}\right)^{2}+\left(\lambda_{3}-\lambda_{4}-\lambda_{5}\right) V_{\chi}^{2} V_{\phi}^{2}}
\end{aligned}
$$

\rightarrow very light scalar: $\quad m_{\sigma}{ }^{2}=2 \lambda_{2} V_{\phi}{ }^{2}+O\left(V_{\phi}{ }^{2} / V_{\chi}{ }^{2}\right)$

$$
m_{h}^{2}=2 \lambda_{1} V_{\chi}^{2}+O\left(V_{\phi}^{2} / V_{\chi}^{2}\right)
$$

Mass Eigenstates h, σ :

$$
\begin{gathered}
h_{0}=c h+s \sigma, \quad \sigma_{0}=-s h+c \sigma \\
c=1+O\left(V_{\phi}^{2} / V_{\chi}^{2}\right), \quad s=-\frac{\lambda_{3}-\lambda_{4}-\lambda_{5}}{2 \lambda_{1}}\left(V_{\phi} / V_{\chi}\right)+O\left(V_{\phi}^{2} / V_{\chi}^{2}\right)
\end{gathered}
$$

\rightarrow Mixing is very small

Note: h behaves essentially like the SM Higgs in interactions with fermions and gauge bosons

Phenomenological Implications

Light scalar σ

Possible decay modes:

- $\sigma \rightarrow v \bar{v}$, if $m_{\sigma}>2 m_{v}$
- $\sigma \rightarrow \gamma \gamma$ (one loop)

$$
\Gamma \sim \frac{e^{8} m_{\sigma}^{5}}{m_{q}{ }^{4}} \Rightarrow \tau \sim 10^{20} y r s
$$

$\rightarrow \sigma$ only observable at colliders as missing energy

Couplings of σ to quarks and charged leptons are highly suppressed

ZZo coupling is proportional to V_{Φ}

$$
\Rightarrow \quad e^{+} e^{-} \rightarrow Z^{*} \rightarrow Z \sigma, \quad Z \rightarrow Z^{*} \sigma \rightarrow f \bar{f} \sigma
$$

are suppressed by a factor of $\left(\mathrm{V}_{\Phi} / \mathrm{m}_{\mathrm{z}}\right)^{2}$

However, ZZ $\sigma \sigma$ coupling is unsuppressed:

$$
Z \rightarrow Z^{*} \sigma \sigma \rightarrow f \bar{f} \sigma \sigma
$$

$\sum_{f} \Gamma(Z \rightarrow f \bar{f} \sigma \sigma) \simeq 2.5 \times 10^{-7} \mathrm{GeV}$
Total Z width $=2.4952+/-0.0023 \mathrm{GeV}(\mathrm{PDG})$
At LEP1, $\approx 1.7 \times 10^{7}$ Z's $\rightarrow \approx 2$ such events

Coupling of σ to neutrinos is relatively large

$$
\Rightarrow \quad Z \rightarrow v \overline{v \sigma} \quad \text { can be significant }
$$

$\Gamma(Z \rightarrow v \overline{v \sigma}) \simeq(2.5 M e V) y_{v}{ }^{2}$

$$
\Rightarrow \sum y_{v}^{2}<0.6
$$

Invisible Z width = 499 +/- 1.5 MeV (PDG)

Can also have $\quad \pi \rightarrow \mu v \sigma$

$$
\begin{aligned}
B(\pi & \rightarrow \mu v \sigma) \simeq 0.05 y_{v}{ }^{2} \\
& \Rightarrow y_{v}<0.02
\end{aligned}
$$

Pseudoscalar ρ

No strong coupling
$\rightarrow \frac{\lambda_{5}}{4 \pi^{2}} \leq 1 \quad \Rightarrow \quad m_{\rho} \leq 470 \mathrm{GeV}$

$$
Z \rightarrow \rho \sigma, \quad Z \rightarrow \rho^{*} \sigma \rightarrow v \bar{v} \sigma
$$

Note: Couplings of ρ to quarks and charged leptons are VEV suppressed
\rightarrow For $\quad m_{\rho}<m_{Z}, \quad \rho \rightarrow v v \quad$ dominant decay mode
$\Rightarrow \quad Z \rightarrow \rho \sigma \quad$ invisible

Invisible Z width = 499 +/- 1.5 MeV (PDG)

$$
\Gamma(Z \rightarrow \rho \sigma)=\frac{G_{F} m_{Z}^{3}}{24 \sqrt{2} \pi}\left(1-\frac{m_{\rho}^{2}}{m_{Z}^{2}}\right)^{3}<1.5 \mathrm{MeV}
$$

For $m_{\rho}>78 \mathrm{GeV}$

For $m_{\rho}>m_{z}$, we have

$$
e^{+} e^{-} \rightarrow Z^{*} \rightarrow \rho \sigma
$$

$$
\sigma=\frac{G_{F} m_{Z}^{4}\left(g_{V}^{2}+g_{A}^{2}\right) s}{24 \pi}\left(\frac{1}{s-m_{Z}^{2}}\right)^{2}\left(1-\frac{m_{\rho}^{2}}{s}\right)^{3}
$$

At LEP2, with $\sqrt{ } \mathrm{s} \sim 200 \mathrm{GeV}$ and $\sim 3000 \mathrm{pb}^{-1}$ of data, <1 event is expected for $m_{p}>95 \mathrm{GeV}$

Heavy scalar h

Essentially SM Higgs

Invisible decay mode: $\quad h \rightarrow \sigma \sigma$

$$
\begin{aligned}
& \Gamma(h \rightarrow \sigma \sigma)=\frac{\left(\lambda_{3}+\lambda_{4}+\lambda_{5}\right)^{2} V_{\chi}^{2}}{32 \pi m_{h}} \\
& \quad m_{h}^{2}=2 \lambda_{1} V_{\chi}^{2}+O\left(V_{\phi}^{2} / V_{\chi}^{2}\right) \\
& \Gamma(h \rightarrow \sigma \sigma)=\frac{\left(\lambda_{3}+\lambda_{4}+\lambda_{5}\right)^{2} m_{h}}{64 \pi \lambda_{1}} \equiv \frac{\lambda^{*} m_{h}}{64 \pi}
\end{aligned}
$$

$$
\lambda^{*}=0.1
$$

$m_{h}=135 \mathrm{GeV}$

For a wide range of λ^{*}, this mode dominant for $m_{h}<160 \mathrm{GeV}$

Current limit for invisible Higgs: $\mathrm{m}_{\mathrm{h}}>112.3 \mathrm{GeV}$ (L3)

At LHC, invisibly decaying Higgs observable through WBF:

$$
q q \rightarrow q q W W \rightarrow q q h, \quad q q \rightarrow q q Z Z \rightarrow q q h
$$

Signal: Two q's with high $p_{T}+$ invisible
This signal can be observed at $95 \% \mathrm{CL}$ with $>10 \mathrm{fb}^{-1}$ of data if $\mathrm{B}\left(\mathrm{h} \rightarrow\right.$ invisible) $>30 \%$ and $\mathrm{m}_{\mathrm{h}}<400 \mathrm{GeV}$ (Eboli and Zeppenfeld)

Difficult to identify invisible particle as Higgs

Cosmological Implications

Big-Bang Nucleosynthesis

-Predicted light element abundances depend on the number g_{*} of light spin degrees of freedom in thermal equilibrium at $\mathrm{T} \sim 1 \mathrm{MeV}$

$$
g_{*}=g_{b}+\frac{7}{8} g_{f}
$$

-In the standard scenario (SBBN), this includes $\gamma, \mathrm{e}^{+/}, \mathrm{v}_{\mathrm{L}}$'s:

$$
\left(g_{*}\right)_{\text {SBBN }}=2+\frac{7}{8}(4)+\frac{7}{8}(6)=10.75
$$

-In our model, relatively strong interactions between left- and right-handed neutrinos and the light scalar σ will keep them in thermal equilibrium

$$
\begin{gathered}
g_{*}=\left(g_{*}\right)_{\text {SBBN }}+1+\frac{7}{8}(6)=17 \\
N_{e f f}=6+\frac{4}{7}
\end{gathered}
$$

-Reactions that interconvert protons and neutrons fall out of thermal equilibrium at a higher temperature ($\mathrm{T} \sim \mathrm{g}^{1 / 6}$)
-Leads to larger ratio of neutrons to protons during BBN
-Gives a mass fraction of $\mathrm{He}-4$ produced during BBN of $\mathrm{Y}_{\mathrm{P}} \approx 0.30$
-Observed value: $Y_{P} \approx 0.25$

Possible Solution: Large Neutrino Degeneracy

- SBBN assumes $\mu_{\mathrm{v}} \approx 0$, but it has not been measured directly
-Alters equilibrium value of neutron to proton ratio to

$$
\frac{n}{p}=e^{-\frac{\mu_{v}}{T}}\left(\frac{n}{p}\right)_{\mu_{v}=0}
$$

- We require μ_{v} / T to be order 0.1
-Studies that allow $\mu_{\mathrm{v}} / T, N_{\text {effi }}$, and Ω_{B} to vary within observational constraints from BBN+WMAP find an upper bound on $\mathrm{N}_{\text {eff }}$ from 7.1 to 8.7 (Barger et al., 2003; Cuoco et al., 2004, Steigman, 2005)

Another Possible Solution: Late-Decaying Particles

-The energetic decay products of a massive particle ($m>$ a few GeV) that decays during or after nucleosynthesis can cause nuclear reactions among background nuclei, altering light element abundances

Non-BBN Bounds on Number of Neutrinos

-WMAP+LRG's: $0.8<\mathrm{N}_{\text {eff }}<7.6$ (Ichikawa, Kawasaki, Takahashi, Nov. 2006) -Seljak, Sloshar, McDonald (WMAP + several other astrophysical data sources) claim that more than 3 neutrinos is required (Sep. 2006)

Domain Walls

-Breaking of discrete Z_{2} symmetry will lead to cosmological domain walls
-Energy per unit area: $\eta \sim V_{\varphi}{ }^{3}$
\rightarrow Produces temperature anisotropies:

$$
\frac{\delta T}{T} \simeq G \eta H_{0}^{-1} \sim 10^{-20}
$$

- Observed level of temperature anisotropies is 10^{-5}

Conclusions

-Proposed new two Higgs doublet model based on $\mathrm{SM} \times \mathrm{Z}_{2}$
$\cdot Z_{2}$ broken at $\sim 10^{-2} \mathrm{eV}$
-Gives new mechanism for tiny neutrino mass

- Neutrinos are Dirac particles
\bullet Higgs: $\mathrm{H}^{+/}, \mathrm{h}, \mathrm{\rho} \rightarrow$ mass at EW scale, $\sigma \rightarrow$ extremely light
-h like SM, but possibly dominant invisible decay mode $\mathrm{h} \rightarrow \sigma \sigma$
-Alters Higgs signals at LHC, but observable through WBF
-BBN problem solvable

