Moduli stabilization in (string) model building: gauge fluxes and loops

Michele Trapletti Institut für Theoretische Physik, Universität Heidelberg

Based on

hep-th/0605232 (with Felix Brümmer and Arthur Hebecker) hep-th/0611102 (with Andreas Braun and Arthur Hebecker)

Introduction: the string-pheno paradigma

- Low energy string theory: d=10, N=I/II SUGRA.
- Necessary a compatification on a 6d space K, such that SUSY is reduced to *N*=1 in 4d.

The choice of K:

- I Topological properties
 - → "topological" properties of the 4d model;
- II Metric properties (Size & Shape)
 - → "parameters" of the 4d model.
- Point: I Size & Shape are vev's of dynamical fields;
 - II Flat potential at tree-level.
- Which control on the phenomenology of the model?

- More in general we have to choose a *background* for all the 4d scalars (internal components of metric, *p*-forms ...)

Non-trivial background for the closed string *p*-forms wrapped in the internal space (IIB Strings)

- → Stabilization of shape (complex structure) moduli.

 Giddings, Kachru, Polchinski '01
- → In case there is a *single* size (Kähler) modulus extra effects (gaugino condensation) can fix it.

Kachru, Kallosh, Linde, Trivedi '03

The minimal option is very specific: an extension is necessary.

Include the effect of

- gauge (open string) fluxes → D-term stabilization;
- loop corrections;
- α' corrections.

Task & Outline

Study of the effects due to gauge fluxes and loop corrections in a 6d toy model

I - Review of the KKLT proposal:

- basic ingredients (fluxes & gaugino condensation)
- the sequestered "uplifting" sector.
- II Realization and extension (two Khäler moduli) from 6d perspective.
 - 6d SUGRA + SYM compactified on T^2/Z_2 ;
 - Scherk-Schwarz mechanism as a source of W_0 ;
 - The presence of gauge fluxes: D-term potential;
 - Loop corrections;
 - The complete potential: complete stabilization.

The KKLT proposal: basic issues

Kachru, Kallosh, Linde, Trivedi '03

- Take a compactification of Type IIB string on a CY with a single Kähler modulus *S*.
- Include closed string fluxes
 - \rightarrow stabilization of complex structure moduli, that can be integrated out. A constant superpotential term W_0 .
- Include non-perturbative effects (gaugino condensation) $W = W_0 + e^{-S}$
 - → stabilization of *S* at a SUSY AdS minimum, with S > 1, $V_{Min} \sim -|W_0|^2$.
- Include a SUSY breaking mechanism
 - → SUSY breaking and "uplifting" of the minimum.

The uplifting sector: sequestering in the throat

- The flux modifies the geometric background:

- The AdS₅ can be seen as a realization of the Randall-Sundrum model: use the same language.
- The bottom of the throat (IR brane) is sequestered from the rest of the space, the top of the throat or UV brane, that is the visible brane.
- The details of the SUSY breaking sector are invisible in the visible sector: the SUSY breaking sector can be modelled in *any* way, the visible effects are just the same.

Choi, Falkowski, Nilles, Olechowski; Lebedev, Nilles, Ratz; Brümmer, Hebecker, MT., ...

6d SUGRA

- The bosonic 6d action is

Nishino, Sezgin '86

$$(-g_6)^{-\frac{1}{2}}\mathcal{L} = -\frac{1}{2}\mathcal{R} - \frac{1}{2}\partial_M\phi\partial^M\phi - \frac{1}{24}e^{2\phi}H_{MNP}H^{MNP} - \frac{1}{4}e^{\phi}F_{MN}F^{MN}$$

with

 $H_{MNP} = \partial_M B_{NP} + F_{MN} A_P + \text{cyclic perm.} = (dB + F \wedge A)_{MNP}$ and is invariant under the gauge transformations

$$\delta A = d\Lambda, \quad \delta B = -\Lambda F + dC$$

where Λ is a scalar and parametrizes the "F" gauge symmetry and C is a 1-form and parametrizes the "B" gauge symmetry.

This action can be seen as the outcome of a K3 compactification of string theory, in case the internal moduli fields are neglected.

Compactification to 4d: effective SUGRA

- We can consider a compactification on an internal T^2/\mathbb{Z}_2 .

$$(g_6)_{MN} = \begin{pmatrix} r^{-2}(g_4)_{\mu\nu} & 0 \\ 0 & r^2(g_2)_{mn} \end{pmatrix}, \quad (g_2)_{mn} = \frac{1}{\tau_2} \begin{pmatrix} 1 & \tau_1 \\ \tau_1 & |\tau|^2 \end{pmatrix}$$

the dimensional reduction produces the following fields

- 4d metric g_4 + internal metric components r, τ_1 , τ_2 ;
- 4d *B* field, i.e. one scalar c + internal B_{56} = b;
- 4d gauge field *F*;
- dilaton.
- g₄ and F fill the standard 4d SUGRA/SYM action;
- the scalars are organised in 3 chiral multiplets, S, T, τ , with Kähler potential

$$K = -\log(S + \bar{S}) - \log(T + \bar{T}) - \log(\tau + \bar{\tau})$$

- the gauge kinetic function is 2S.

Scherk-Schwarz mechanism: a source for W_0

- R-Symmetry in 6d SUGRA

Let 6d SUGRA be defined as a compactification of 10d SUGRA

- T⁴ compactification: the 10d Lorentz group is broken as $SO(1,9) \longrightarrow SO(1,6) \times SO(4)_R$.
- K3 compactification:
 - consider K3 ~ T^4/Z_n for simplicity
 - let $SO(4)_R = SU(2)_{R1} \times SU(2)_{R2}$
 - take Z_n in $SU(2)_{R1} \longrightarrow SU(2)_{R1}$ is broken but $SU(2)_{R2}$ remains as an active R-symmetry!

- SS compactification of 6d SUGRA

Consider a generic bulk field Φ and define

$$\Phi(x^5 + 2\pi, x^6) = T_5 \Phi(x^5, x^6), \ \Phi(x^5, x^6 + 2\pi) = T_6 \Phi(x^5, x^6)$$

with T_5 and T_6 being $SU(2)_R$ operators.

In case one of the matrices is non-trivial

→ SS compactification Dudas, Grojean '97;
Barbieri, Hall, Nomura ...;

- Consistency conditions: T^2 compactification T_i is the embedding in $SU(2)_R$ of the translation t_i along x^i . Since t_5 t_6 = t_6 t_5 we need T_5 T_6 = T_6 T_5 .
- Consistency conditions: T²/Z_N compactification

In case of an orbifold, also the orbifold rotation r is embedded into the R-symmetry group, via a matrix R. Such a matrix is *fixed* (up to discrete choice) by the requirement of having SUSY in the 4d model, and is *non-trivial*.

Again, the commutation relations of t_5 , t_6 , and r define commutation relations for T_5 , T_6 , and R. These are non-trivial, since R is non-trivial.

In case a solution exists with T_5 and/or T_6 non-trivial

→ SS compactification

If then the non-trivial T's can be chosen in a "continuos" way, linked to the identity, then the breaking is described by a constant superpotential term W_0 .

Such is the case in T^2/Z_2 compactifications ... Lee '05 ... and only in this case in the 2d case.

Gauge background: D-term potential

- We can consider a constant background $F_{56} = f$.
- The fields A^5 , A^6 are not globally defined: $A(z+\pi)=A(z)+d\Lambda_0$
- Thus also B_{56} is not globally defined: since $H = dB + F \wedge A$ and H is gauge invariant, it follows $B(z+\pi)=B(z)$ - $\Lambda_0 F$, thus both A and B have a non-trivial profile in the internal space.
- In order to single out the zero modes of *A* and *B* we
 - a) define $A = \langle A \rangle + \mathcal{A}$, splitting the background field, not globally defined, from the "quantum fluctuations", globally defined and with standard constant zero-mode (standard KK massless state);
 - b) redefine the field B as $B = \mathcal{B} + \langle A \rangle \wedge \mathcal{A}$ so that the new field \mathcal{B} is also globally defined with

Kaloper, Myers '99; Villadoro PhD Thesis '06

- Given the redefinition:

$$\delta \mathcal{B}_{56} = -2\Lambda f$$

- \rightarrow \mathcal{B} transforms (as expected)
- \rightarrow the gauge transformation is the double of what one would naively expect from $H = dB + F \wedge A$
- The "new" SUGRA is exactly the old one, provided that one redefines the field $b = B_{56}$ as $b = \mathcal{B}_{56}$. In this way the field T, whose imaginary part is b, transforms under the gauge transformation.
- Given such a transformation we can infer the D-term potential $D = i K_I X^I$, where X^I is the Killing vector, in the present case being $X^T = -i f$.
- the present case being $X^T = -if$. - Thus we have D = f/t, and $V_D = \frac{f^2}{2st^2}$.
- We can compute the potential also directly from the F^2 term in the lagrangian, the two results coincide.

D-term + W₀ + gaugino condensation : a clash?

- Take the KKLT model single modulus S superpotential $W = W_0 + e^{-S}$
- Can we use a D-term potential to break SUSY and uplift the AdS minimum? No, for two reasons:
- I The D-term is associated with a gauge transformation involving one modulus. If there is only S then it must transform, but this is incompatible with $W = W_0 + e^{-S}$.

 Choi et al.; Dudas, Vempati; Villadoro, Zwirner
- Present case: no clash! The field transforming is T, and the field entering the gaugino condensation term is S.

 see also Haack et al. '06 for a realization with D7-branes (other way out: A(M) e^{-S} Achucarro et al; Dudas et al; Haack et al....)
- II D-terms and F-terms are related, and it is impossible to uplift a SUSY minimum (F = 0) via a D-term.
- Present case: no clash! The minimum with non-zero D-term is non-SUSY: F_T is not zero! (but no uplift ...)

Loop corrections

- We can introduce in the system bulk fields (hypers) charged under the U(1) gauge group.
- These fields have a standard KK reduction in absence of a gauge background.
- In the presence of a gauge background the KK reduction is deeply modified:

 Bachas '95

$$m_n^2 = \frac{2|f|}{r^4} \left(n + \frac{1}{2}\right)$$
 for bosons,

$$m_n^2 = \frac{2|f|}{r^4} \left(n + \frac{1}{2} \pm \frac{1}{2} \right)$$
 for fermions,

and the degeneracy can be deduced via the Dirac index:

$$d_n = f/(2\pi) = N$$

- From the 4d spectrum the 1-loop potential follows

$$V_{loop} = \frac{\alpha |f|^3}{(2\pi)^3 (st)^2}$$

The complete potential: stabilization

Ingredients:

I - $W = W_0 + e^{-S}$ (from SS twist and gaugino condensation)

II - D-term potential
$$V_D = \frac{f^2}{2st^2}$$
 III - Loop corrections $\alpha |f|^3$ $V_{loop} = \frac{\alpha |f|^3}{(2\pi)^3 (st)^2}$

Step 1:

Neglect t and include only I: \rightarrow KKLT potential in S, $\tilde{V}(s)$ s fixed in a SUSY AdS minimum

Step 2:

Include t $\rightarrow V = \tilde{V}(s)/t$ runaway behaviour in t

Step 3:

Include the D-term (II) \rightarrow stabilization of t in a non-SUSY AdS minimum

Step 4:

Include the loop effect (III) — no destabilization (but also no uplift)

Conclusions

- We have shown the role of gauge fluxes/D-terms in the stabilization of a 6d SUGRA model, that can be seen as a non-trivial extension of the KKLT model.
 - No clash D-term vs $W = W_0 + e^{-S}$: extra modulus!
 - D-term crucial in the stabilization the extra modulus.
 - No uplifting via the D-term.
- Computed the 1-loop corrections to the potential, and re-cast them as corrections to the Khäler potential.
 - No de-stabilization of the minimum.
 - No uplifting.
- "By-product": we considered SS compactification in 2d as a source for W_0
 - Possible for T^2 or T^2/Z_2 compactifications;
 - Not possible for T^2/Z_N compactifications.