Colliders and Cosmology

Dark Matter in variations of constrained MSSM models:
A comparison between accelerator and direct detection constraints

- CMSSM
- mSUGRA
- Sub-GUT
- NUHM

Evidence for Dark Matter

Clowe et al.

SNLS

How Much Dark Matter

WMAP 3
Precise bounds on matter content

Spergel etal

How Much Dark Matter

WMAP 3
Spergel etal
Precise bounds on matter content

$$
\Omega_{\mathrm{m}} \mathrm{~h}^{2}=0.1265_{-0.0080}^{+0.0081} \quad \Omega_{\mathrm{b}} \mathrm{~h}^{2}=0.0223 \pm 0.0007
$$

$$
\Omega_{\mathrm{cdm}} \mathrm{~h}^{2}=0.1042_{-0.0080}^{+0.0081}
$$

or

$$
\Omega_{\mathrm{cdm}} \mathrm{~h}^{2}=0.0882-0.1204(2 \sigma)
$$

Unification Conditions

- Gaugino masses: $\mathrm{M}_{\mathrm{i}}=\mathrm{m}_{1 / 2}$
- Scalar masses: $\mathrm{m}_{\mathrm{i}}=\mathrm{m}_{0}$
- Trilinear terms: $\mathrm{A}_{\mathrm{i}}=\mathrm{A}_{0}$

Unification Conditions

- Gaugino masses: $\mathrm{M}_{\mathrm{i}}=\mathrm{m}_{1 / 2}$
- Scalar masses: $\mathrm{m}_{\mathrm{i}}=\mathrm{m}_{0}$
predict μ, B
- Trilinear terms: $\mathrm{A}_{\mathrm{i}}=\mathrm{A}_{0}$

Unification Conditions

- Gaugino masses: $\mathrm{M}_{\mathrm{i}}=\mathrm{m}_{1 / 2}$
- Scalar masses: $\mathrm{m}_{\mathrm{i}}=\mathrm{m}_{0}$ predict μ, B
- Trilinear terms: $\mathrm{A}_{\mathrm{i}}=\mathrm{A}_{0}$

> mSugra Conditions

- Gaugino masses: $m_{3 / 2}=m_{0}$
- Bilinear term: $\mathrm{B}_{0}=\mathrm{A}_{0}-\mathrm{m}_{0}$

Unification Conditions

- Gaugino masses: $\mathrm{M}_{\mathrm{i}}=\mathrm{m}_{1 / 2}$
- Scalar masses: $\mathrm{m}_{\mathrm{i}}=\mathrm{m}_{0}$
predict μ, B
- Trilinear terms: $\mathrm{A}_{\mathrm{i}}=\mathrm{A}_{0}$

mSugra Conditions

- Gaugino masses: $m_{3 / 2}=m_{0}$
- Bilinear term: $\mathrm{B}_{0}=\mathrm{A}_{0}-\mathrm{m}_{0}$ predict $\mu, \tan \beta$

Typical Regions

Direct Detection

- Eastic scattering cross sections for χ p
- Dominant contribution to spin-independent scattering

$$
\mathcal{L}=\alpha_{3 i} \bar{\chi} \chi \bar{q}_{i} q_{i},
$$

Through light squark exchange

- Dominant for binos

Through Higgs exchange

- Requires some Higgsino component

Uncertainties from hadronic matrix elements

The scalar cross section

$$
\sigma_{3}=\frac{4 m_{r}^{2}}{\pi}\left[Z f_{p}+(A-Z) f_{n}\right]^{2}
$$

where

$$
\frac{f_{p}}{m_{p}}=\sum_{q=u, d, s} f_{T q}^{(p)} \frac{\alpha_{3 q}}{m_{q}}+\frac{2}{27} f_{T G}^{(p)} \sum_{c, b, t} \frac{\alpha_{3 q}}{m_{q}}
$$

and

$$
m_{p} f_{T q}^{(p)} \equiv\langle p| m_{q} \bar{q} q|p\rangle \equiv m_{q} B_{q}
$$

determined by

$$
\sigma_{\pi N} \equiv \Sigma=\frac{1}{2}\left(m_{u}+m_{d}\right)\left(B_{u}+B_{d}\right)
$$

The strangeness contribution to the proton mass

$$
\begin{aligned}
y=\frac{2 B_{s}}{B_{u}+B_{d}} & =\frac{\left(m_{u}+m_{d}\right)\langle p| s \bar{s}|p\rangle}{\Sigma} \\
& =1-\frac{\sigma_{0}}{\Sigma} \quad \sigma_{0}=36 \pm 7 \mathrm{MeV}
\end{aligned}
$$

Gasser, Leutwyler, Sanio
For $\Sigma=45 \mathrm{MeV}, \mathrm{y}=0.2$ Knecht

$$
f_{T_{u}}=0.020 \quad f_{T_{d}}=0.026 \quad f_{T_{s}}=0.117
$$

The strangeness contribution to the proton mass

$$
\begin{aligned}
& \begin{aligned}
& y=\frac{2 B_{s}}{B_{u}+B_{d}}=\frac{\left(m_{u}+m_{d}\right)\langle p| s \bar{s}|p\rangle}{\Sigma} \\
&=1-\frac{\sigma_{0}}{\Sigma} \\
& \mathrm{~V}, \mathrm{y}=0.2 \sigma_{0}=36 \pm 7 \mathrm{MeV} \\
& \text { Gasser, Leutwyler, Sanio } \\
& \text { Knecht }
\end{aligned}
\end{aligned}
$$

$$
f_{T_{u}}=0.020 \quad f_{T_{d}}=0.026 \quad f_{T_{s}}=0.117
$$

For $\Sigma=64 \mathrm{MeV}, \mathrm{y}=0.44$

$$
f_{T_{u}}=0.027 \quad f_{T_{d}}=0.039 \quad f_{T_{s}}=0.363
$$

The strangeness contribution to the proton mass

$$
\begin{aligned}
y=\frac{2 B_{s}}{B_{u}+B_{d}} & =\frac{\left(m_{u}+m_{d}\right)\langle p| s \bar{s}|p\rangle}{\Sigma} \\
& =1-\frac{\sigma_{0}}{\Sigma} \quad \sigma_{0}=36 \pm 7 \mathrm{MeV}
\end{aligned}
$$

Gasser, Leutwyler, Sanio Knecht
For $\Sigma=45 \mathrm{MeV}, \mathrm{y}=0.2$

$$
f_{T_{u}}=0.020 \quad f_{T_{d}}=0.026 \quad f_{T_{s}}=0.117
$$

For $\Sigma=64 \mathrm{MeV}, \mathrm{y}=0.44$

$$
f_{T_{u}}=0.027 \quad f_{T_{d}}=0.039 \quad f_{T_{s}}=0.363
$$

For $\Sigma=36 \mathrm{MeV}, \mathrm{y}=0$

$$
f_{T_{u}}=0.016 \quad f_{T_{d}}=0.020 \quad f_{T_{s}}=0
$$

CMSSM

Foliation in $\tan \beta$

Focus Point Region

As m_{0} gets very large, RGE's force μ to 0 , allowing neutralino to become Higgsino like with an acceptable relic density.

Indirect Sensitivities

- M_{W}
- $\sin ^{2} \theta$
- Γ_{Z}
- $(\mathrm{g}-2)_{\mu}$
- $\operatorname{BR}(b \rightarrow s \gamma)$
- $\operatorname{BR}\left(\mathrm{B}_{\mathrm{u}} \rightarrow \tau \nu_{\tau}\right)$
- $\Delta \mathrm{M}_{\mathrm{B}_{\mathrm{s}}}$
- M_{h}
- $\operatorname{BR}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)$

Indirect Sensitivities to CMSSM models

EHOWW

Direct Detection in the CMSSM

Direct Detection in regions of lowest χ^{2}

Visible Particle Masses

\square Phenomenologically acceptable points
X LHC visible points
cf Baer etal
A Cosmologically acceptable points
$\sigma_{\mathrm{p}}>10^{-8} \mathrm{pb}$

Ellis, KAO, Santoso, Spanos

Sub-GUT models

Why assume that the supersymmetry breaking scale is $\mathrm{M}_{\mathrm{Gut}}$?

Ellis, Olive, Sandick

Sub-GUT models

Why assume that the supersymmetry breaking scale is $\mathrm{M}_{\mathrm{Gut}}$?

Flavor-blind supersymmetry breaking \rightarrow universality

Sub-GUT models

Why assume that the supersymmetry breaking scale is $\mathrm{M}_{\mathrm{Gut}}$?

Flavor-blind supersymmetry breaking \rightarrow universality but at what scale?

Sub-GUT models

Why assume that the supersymmetry breaking scale is $\mathrm{M}_{\mathrm{Gut}}$?

Flavor-blind supersymmetry breaking \rightarrow universality but at what scale?

Gauge coupling unification maintained (at the GUT scale)

Ellis, Olive, Sandick

Sub-GUT models

Why assume that the supersymmetry breaking scale is $\mathrm{M}_{\mathrm{Gut}}$?

Flavor-blind supersymmetry breaking \rightarrow universality but at what scale?

Gauge coupling unification maintained (at the GUT scale)

Gaugino and scalar masses unified at some scale $\mathrm{M}_{\text {in }}<\mathrm{M}_{\text {GUt }}$

Ellis, Olive, Sandick

mSugra models

- $\tan \beta$ fixed by boundary conditions $\left(B_{0}=A_{0}-m_{0}\right)$
- "planes" determined by $\mathrm{A}_{0} / \mathrm{m}_{0}$
- Gravitino often the $\operatorname{LSP}\left(\mathrm{m}_{3 / 2}=\mathrm{m}_{0}\right)$

The Very CMSSM (mSUGRA):

- Add $\mathrm{B}_{0}=\mathrm{A}_{0}-\mathrm{m}_{0}$: Select tan β

Ellis, Olive, Santoso, Spanos

Limits on Unstable particles due to

Photo-Destruction and -Production of Nuclei

2 key parameters

$$
\zeta_{X} \equiv \frac{n_{X}^{0}}{n_{\gamma}^{0}} M_{X}=r M_{X}=2 r E_{0}, \quad \text { and } \quad \tau_{X}
$$

Effects of Bound States

- In SUSY models with a $\widetilde{\tau}$ NLSP, bound states form between ${ }^{4} \mathrm{He}$ and $\widetilde{\tau}$
-The ${ }^{4} \mathrm{He}(\mathrm{D}, \gamma)^{6} \mathrm{Li}$ reaction is normally highly suppressed (production of low energy γ)
-Bound state reaction is not suppressed

mSugra models

- $\tan \beta$ fixed by boundary conditions $\left(\mathrm{B}_{0}=\mathrm{A}_{0}-\mathrm{m}_{0}\right)$
- "planes" determined by $\mathrm{A}_{0} / \mathrm{m}_{0}$
- Gravitino often the $\operatorname{LSP}\left(\mathrm{m}_{3 / 2}=\mathrm{m}_{0}\right)$
- No Funnels
- No Focus Point

Direct Detection of NDM in the mSugra models

NUHM

- Drop unification of scalar masses
- All Higgs soft masses, m_{1} and m_{2}, to be chosen independently of m_{0}
- Allows μ and m_{A} to be free parameters

The $\mathrm{m}_{0}-\mathrm{m}_{1 / 2}$ plane

+ CMSSM value

Ellis, Falk, Olive, Santoso

The $\mathrm{m}_{\mathrm{A}^{-}} \mu$ plane

+ CMSSM value

The $\mathrm{m}_{\mathrm{A}}-\mu$ plane

+ CMSSM value
Ellis, Olive, Santoso

CDM-consistent $\mathbf{M}_{\mathrm{A}}-\tan \beta$ planes

Direct Detection in the NUHM

Competition between Direct Detection and B $\rightarrow \mu^{+} \mu^{-}$

Hint of Higgs?

CDF

Not possible in CMSSM (light Higgs) but barely possible in NUHM

NUHM Planes

Hint of Higgs?

- Small M_{A} and large tan β possible but very constrained in the NUHM (not possible in the CMSSM)
- $\operatorname{BR}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$should be detected soon
- $\mathrm{BR}(\mathrm{b} \rightarrow \mathrm{s} \gamma)$ should show deviations from SM
- Dark Matter should be detected by CDMS and XENON10

Summary

- mSugra models most difficult to access experimental esp. if GDM
- Good indication from indirect sensitivities for 'low' energy signal for SUSY.
- Good prospect for Direct detection and B $\rightarrow \mu^{+} \mu^{-}$ particularly in non CMSSM models (unless GDM)
- Hint of Higgs should be accompanied by many deviations from the SM

