Colliders and Cosmology

Dark Matter in variations of constrained MSSM models:

A comparison between accelerator and direct detection constraints

- CMSSM
- mSUGRA
- Sub-GUT
- NUHM

with: Ellis, Hahn, Heinemeyer, Sandick, Santoso, Spanos, Weber, Weiglein

Evidence for Dark Matter

How Much Dark Matter

WMAP 3

Spergel etal

Precise bounds on matter content

How Much Dark Matter

WMAP 3

Spergel etal

Precise bounds on matter content

$$\Omega_{\rm m} h^2 = 0.1265^{+0.0081}_{-0.0080}$$
 $\Omega_{\rm b} h^2 = 0.0223 \pm 0.0007$

$$\Omega_{cdm}h^2 = 0.1042^{+0.0081}_{-0.0080}$$
or
 $\Omega_{cdm}h^2 = 0.0882 - 0.1204 \quad (2 \sigma)$

- Gaugino masses: $M_i = m_{1/2}$
- Scalar masses: $m_i = m_0$
- Trilinear terms: $A_i = A_0$

- Gaugino masses: $M_i = m_{1/2}$
- Scalar masses: $m_i = m_0$

• Trilinear terms: $A_i = A_0$

predict µ, B

- Gaugino masses: $M_i = m_{1/2}$
- Scalar masses: $m_i = m_0$

predict μ, B

• Trilinear terms: $A_i = A_0$

mSugra Conditions

- Gaugino masses: $m_{3/2} = m_0$
- Bilinear term: $B_0 = A_0 m_0$

- Gaugino masses: $M_i = m_{1/2}$
- Scalar masses: $m_i = m_0$

predict μ, B

• Trilinear terms: $A_i = A_0$

mSugra Conditions

- Gaugino masses: $m_{3/2} = m_0$
- Bilinear term: $B_0 = A_0 m_0$

predict μ , tan β

Typical Regions

 $m_{1/2}$

Direct Detection

• Eastic scattering cross sections for χ p

Dominant contribution to spin-independent scattering

$$\mathcal{L} = \alpha_{3i} \bar{\chi} \chi \bar{q}_i q_i,$$

Through light squark exchange

Dominant for binos

Through Higgs exchange

- Requires some Higgsino component

Uncertainties from hadronic matrix elements

The scalar cross section

$$\sigma_3 = \frac{4m_r^2}{\pi} [Zf_p + (A - Z)f_n]^2$$

where

$$\frac{f_p}{m_p} = \sum_{q=u,d,s} f_{Tq}^{(p)} \frac{\alpha_{3q}}{m_q} + \frac{2}{27} f_{TG}^{(p)} \sum_{c,b,t} \frac{\alpha_{3q}}{m_q}$$

and

$$m_p f_{Tq}^{(p)} \equiv \langle p | m_q \bar{q} q | p \rangle \equiv m_q B_q$$

determined by

$$\sigma_{\pi N} \equiv \Sigma = \frac{1}{2}(m_u + m_d)(B_u + B_d)$$

The strangeness contribution to the proton mass

$$y=rac{2B_s}{B_u+B_d}=rac{(m_u+m_d)\langle p|sar{s}|p
angle}{\Sigma}$$

$$=1-rac{\sigma_0}{\Sigma}$$

$$= 1 - \frac{\sigma_0}{\Sigma}$$
 $\sigma_0 = 36 \pm 7 \text{ MeV}$

Gasser, Leutwyler, Sanio Knecht

For
$$\Sigma = 45$$
 MeV, $y = 0.2$

$$f_{T_u} = 0.020$$
 $f_{T_d} = 0.026$ $f_{T_s} = 0.117$

$$f_{T_s} = 0.117$$

The strangeness contribution to the proton mass

$$y=rac{2B_s}{B_u+B_d}=rac{(m_u+m_d)\langle p|sar{s}|p
angle}{\Sigma}$$

$$=1-rac{\sigma_0}{\Sigma}$$

$$= 1 - \frac{\sigma_0}{r}$$
 $\sigma_0 = 36 \pm 7 \text{ MeV}$

Gasser, Leutwyler, Sanio Knecht

For
$$\Sigma = 45$$
 MeV, $y = 0.2$

$$f_{T_u} = 0.020$$
 $f_{T_d} = 0.026$ $f_{T_s} = 0.117$

$$f_{T_d} = 0.026$$

$$f_{T_s} = 0.117$$

For
$$\Sigma = 64$$
 MeV, $y = 0.44$

$$f_{T_u} = 0.027$$
 $f_{T_d} = 0.039$ $f_{T_s} = 0.363$

$$f_{T_d} = 0.039$$

$$f_{T_s} = 0.363$$

The strangeness contribution to the proton mass

$$y=rac{2B_s}{B_u+B_d}=rac{(m_u+m_d)\langle p|sar{s}|p
angle}{\Sigma}$$

$$=1-rac{oldsymbol{\sigma}_0}{\Sigma}$$

$$\sigma_0 = 36 \pm 7 \text{ MeV}$$

Gasser, Leutwyler, Sanio Knecht

For
$$\Sigma = 45$$
 MeV, $y = 0.2$

$$f_{T_u} = 0.020$$
 $f_{T_d} = 0.026$ $f_{T_s} = 0.117$

$$f_{T_d} = 0.026$$

$$f_{T_{\rm s}} = 0.117$$

For
$$\Sigma = 64$$
 MeV, $y = 0.44$

$$f_{T_u} = 0.027$$

$$f_{T_d} = 0.039$$

$$f_{T_u} = 0.027$$
 $f_{T_d} = 0.039$ $f_{T_s} = 0.363$

For
$$\Sigma = 36$$
 MeV, $y = 0$

$$f_{T_u} = 0.016$$
 $f_{T_d} = 0.020$ $f_{T_s} = 0.$

$$f_{T_d} = 0.020$$

$$f_{T_s}=0.$$

CMSSM

Foliation in tan β

Focus Point Region

As m₀ gets very large, RGE's force μ to 0, allowing neutralino to become Higgsino like with an acceptable relic density.

Feng Matchev Moroi Wilczek

Indirect Sensitivities

- Mw
- $\sin^2 \theta$
- \bullet $\Gamma_{\rm Z}$
- $(g-2)_{\mu}$
- BR($b \rightarrow s \gamma$)
- BR($B_u \rightarrow \tau \nu_{\tau}$)
- \bullet ΔM_{B_s}
- **M**_h
- BR($B_s \rightarrow \mu^+ \mu^-$)

$$\chi^2 \equiv \sum_{n=1}^4 \left(\frac{R_n^{\text{exp}} - R_n^{\text{theo}}}{\sigma_n} \right)^2 + \chi_{M_h}^2$$

Ellis, Heinemeyer, Olive, Weber, Weiglein

Indirect Sensitivities to CMSSM models

Direct Detection in the CMSSM

Direct Detection in regions of lowest χ^2

Visible Particle Masses

- Phenomenologically acceptable points
- X LHC visible points cf Baer etal
- ▲ Cosmologically acceptable points
- $\sigma_{\rm p} > 10^{-8} \, \rm pb$

Why assume that the supersymmetry breaking scale is M_{GUT}?

Why assume that the supersymmetry breaking scale is M_{GUT} ?

Flavor-blind supersymmetry breaking → universality

Why assume that the supersymmetry breaking scale is M_{GUT} ?

Flavor-blind supersymmetry breaking → universality but at what scale?

Why assume that the supersymmetry breaking scale is M_{GUT} ?

Flavor-blind supersymmetry breaking → universality but at what scale?

Gauge coupling unification maintained (at the GUT scale)

Why assume that the supersymmetry breaking scale is M_{GUT} ?

Flavor-blind supersymmetry breaking → universality but at what scale?

Gauge coupling unification maintained (at the GUT scale)

Gaugino and scalar masses unified at some scale $M_{in} < M_{GUT}$

mSugra models

- tan β fixed by boundary conditions (B₀ = A₀ m₀)
- ``planes'' determined by A₀/m₀
- Gravitino often the LSP $(m_{3/2} = m_0)$

The Very CMSSM (mSUGRA):

• Add $B_0 = A_0 - m_0$: Select tan β

Limits on Unstable particles due to

Photo-Destruction and -Production of Nuclei

2 key parameters

$$\zeta_X \equiv rac{n_X^0}{n_\gamma^0} M_X = r M_X = 2r E_0, \quad ext{and} \quad au_X$$

Effects of Bound States

- In SUSY models with a $\tilde{\tau}$ NLSP, bound states form between ⁴He and $\tilde{\tau}$
- •The ⁴He (D, γ) ⁶Li reaction is normally highly suppressed (production of low energy γ)
- Bound state reaction is not suppressed

Cyburt, Ellis, Fields, KO, Spanos

Cyburt, Ellis, Fields, KO, Spanos

Cyburt, Ellis, Fields, KO, Spanos

mSugra models

- tan β fixed by boundary conditions (B₀ = A₀ m₀)
- ``planes'' determined by A₀/m₀
- Gravitino often the LSP $(m_{3/2} = m_0)$
- No Funnels
- No Focus Point

Direct Detection of NDM in the mSugra models

NUHM

- Drop unification of scalar masses
- All Higgs soft masses, m₁ and m₂, to be chosen independently of m₀
- Allows μ and m_A to be free parameters

The $m_0 - m_{1/2}$ plane

+ CMSSM value

The m_A – μ plane

+ CMSSM value

Ellis, Falk, Olive, Santoso

Ellis, Olive, Santoso, Spanos

The m_A – μ plane

+ CMSSM value

Ellis, Olive, Santoso

CDM-consistent M_A -tan β planes

Direct Detection in the NUHM

Competition between Direct Detection and B $\rightarrow \mu^+ \mu^-$

Hint of Higgs?

CDF

Not possible in CMSSM (light Higgs) but barely possible in NUHM

NUHM Planes

Hint of Higgs?

• Small M_A and large tan β possible but very constrained in the NUHM (not possible in the CMSSM)

- BR($B_s \rightarrow \mu^+ \mu^-$) should be detected soon
- BR(b \rightarrow s γ) should show deviations from SM
- Dark Matter should be detected by CDMS and XENON10

Summary

- mSugra models most difficult to access experimental esp. if GDM
- Good indication from indirect sensitivities for `low' energy signal for SUSY.
- Good prospect for Direct detection and B→ µ⁺ µ⁻
 particularly in non CMSSM models (unless GDM)
- Hint of Higgs should be accompanied by many deviations from the SM