Precision Measurement of the Stop Quark Mass at the ILC

-preliminary results-

André Sopczak (Lancaster U)

Ayres Freitas (Zurich U)

Caroline Milsténe (Fermilab)

Michael Schmitt (Northwestern U)

Outline

- Introduction
- Previous methods to determine the scalar top quark mass.
- New method using measurements at 260 and 500 GeV center-of-mass energies.
- Iterative Discriminant Analysis (IDA) versus sequential-cut analysis for event selection.
- MSSM interpretation for dark matter annihilation.
- Conclusions

Introduction

- Supersymmetric models predict new particles within the reach of the future Linear Collider.
- To understand the model structure and the mechanism(s) of symmetry breaking, it is important to know the masses of the new particles precisely.
- The mass determination of the scalar partner of the top quark (stop) at an e⁺e⁻ collider is studied.
- A relatively light stop is motivated by attempts to explain electroweak baryogenesis and can play an important role in Cold Dark Matter (CDM) annihilation.
- Stop mass precision crucial for CDM prediction at the ILC.
- A new method makes use of cross-section measurements near the pair-production threshold as well as at higher center-of-mass energies.

Signal Signature

Previous Methods to Determine Scalar Top Mass at the ILC

Recent overview of ILC Scalar Top studies: LCWS'07 contribution May 31, 2007 (AS).

Methods:

- 1. Cross section determination for two different beam polarizations.
- 2. Threshold dependence on cross section.
- 3. Endpoint of jet energy spectrum.
- 4. Minimum Mass of jets (J.Feng).

Beam Polarization Method

Finch, Nowak, AS

At 12%

Signal:

1350

Efficiency {

Background: 145

Beam Polarization Method

 $\tilde{t}(c\chi^0)$ E_{cm}=500 GeV CHARM TAG SPS 5

m(stop) (GeV)

 $500\,\mathrm{fb^{-1}}$ for each polarization: $\Delta m_{\tilde{t}_*} = \pm 0.57\mathrm{GeV}$

$$\Delta\cos\theta_{\tilde{\tau}} = \pm 0.012$$

Threshold Scan

Use 'right-handed polarization' to reduce backgrounds Measure cross section close to threshold 6 points with 50 fb⁻¹ per point.

Mass from fit to shape: $220.9 \pm 1.2 \text{ GeV}$

Jet Energy Method

Subtract Background. Straight line fit to decreasing and increasing slopes.

Measure Endpoints at Half Height Position (statistical uncertainty is small).

Minimum Jet Endpoint =
$$45.7 \pm 1.0 \text{ GeV}$$
 $m_{\tilde{t}_1} = 219.3 \pm 1.7 \text{ GeV}$
Maximum Jet Endpoint = $130.2 \pm 1.5 \text{ GeV}$ $m_{\tilde{\chi}_1^0} = 119.4 \pm 1.6 \text{ GeV}$

Minimum Mass

If $m_{\tilde{\chi}_1^0}$ is known: calculate minimum allowed mass of the two jets; it peaks at $m_{\tilde{t}_1}$.

- Monte Carlo samples varying $m_{\tilde{t}_1}$
- Fit minimum mass distribution.
- Result: $m_{\tilde{t}_1} = 220.5 \pm 1.5 \text{ GeV}$

Previous SPS-5 Mass Precision

Method	$\Delta_m \; ({\rm GeV})$	luminosity	comment
Polarization	0.57	$2 \times 500~\mathrm{fb^{-1}}$	no theory errors included
Threshold Scan	1.2	$300 \; {\rm fb^{-1}}$	right hand polarization
End Point	1.7	$500 \; {\rm fb^{-1}}$	
Minimum Mass	1.5	$500 \; {\rm fb^{-1}}$	assumes $m_{\tilde{\chi}_1^0}$ known

Small Stop-Neutralino Mass Difference

Motivation:

- Baryongenesis (Carena, Quiros, Wagner '96): mt

 1
- Dark Matter (Carena, Balazs, Wagner '04): correct Cold Dark Matter for small mass difference.

Example: Phys. Rev. D 72,115008 (2005) and Snowmass Conf. Proc. (2005) M. Carena, A. Finch, A. Freitas, C. Milstene, H. Nowak, A. Sopczak

- $m_{\tilde{U}3}^2 = -99^2 \text{ GeV}^2$
- At = -1050 GeV
- $M_1 = 112.6 \text{ GeV}$
- $M_2 = 225 \text{ GeV}$
- $|\mu| = 320 \text{ GeV}$
- $\Phi \mu = 0.2$
- tanβ = 5

Mass spectrum:

 $m\tilde{t}_1 = 122.5 \text{ GeV (lightest stop quark)}$

 $m\tilde{x}^{0}_{1} = 107.2 \text{ GeV (lightest neutralino)}$

 \rightarrow Δ m=15.3 GeV

 $\cos\theta \tilde{t} = 0.0105$, thus \tilde{t} is right-handed

Mass Resolution in Previous Study

 Δ m(stop)=±1.0 GeV

Mass uncertainty uncertainty on CDM prediction.

New Method to Determine Stop Mass

Determine stop pair production cross-section near threshold (th) and near the peak (pk) cross section. Use ratio Y to determine mass.

Cancellation of systematic uncertainties by using two cross-section measurements.

$$Y(M_X, \sqrt{s_{\rm th}}) \equiv \frac{N_{\rm th} - B_{\rm th}}{N_{\rm pk} - B_{\rm pk}} = \frac{\sigma_{\tilde{t}}(\sqrt{s_{\rm th}})}{\sigma_{\tilde{t}}(\sqrt{s_{\rm pk}})} \cdot \frac{\epsilon_{\rm th}}{\epsilon_{\rm pk}} \cdot \frac{\mathcal{L}_{\rm th}}{\mathcal{L}_{\rm pk}}$$

Cross Section vs √s

Cross-section very sensitive to stop mass in threshold region.

Principle of Method

- Expected Y=f(m_{stop}) from the theoretical cross-section (red line).
- Y from the simulated data (blue line).
- Uncertainty on Y determined uncertainty on stop mass.
- This scenario, at \sqrt{s} =260 GeV: σ =9.2 fb and at peak: σ =77fb.
- Assumed Background 4.3fb-1 (L_{th}=50fb⁻¹, L_{pk}=500fb⁻¹ from our previous study.)

Production Cross-Section

Process	σ[pb]] at √s=26	0GeV	σ[pb]	at √s=50	0GeV
P (e-)/ P(e+)	0/0	-80%/+60%	+80%/-60%	0/0	-80%/+60%	+80%/-60%
st ₁ st ₁ *	.032	0.017	0.077	.118	.072	0.276
WW	16.9	48.6	1.77	8.6	24.5	0.77
ZZ	1.12	2.28	0.99	0.49	1.02	0.44
Wenu	1.73	3.04	0.50	6.14	10.6	1.82
eeZ	5.1	6.0	4.3	7.5	8.5	6.2
qq, qq ≠ tt	49.5	92.7	53.1	13.1	25.4	14.9
tt	0.0	0.0	0.0	0.55	1.13	0.50
$\gamma\gamma$ (p _t > 5 GeV)	786			936		

A. Freitas et al EPJ C21(2001) 361, EPJ C34 (2004) 487, GRACE and COMPHEP - Next to Leading Order, assuming a stop mixing angle (0.01)

Signal and Background Simulation

- Simulation: Pythia (gen.), Simdet (det.), Circe (photon rad.)
- Stop fragmentation influences accurate efficiency estimate:
- 1) Stop quarks live long enough to form stable hadrons, thus fragmentation of stop hadrons are included in the simulation.
- 2) When the stop hadron decays to charm and spectator quarks, the fragmentation of the charm quark is also simulated (Peterson fragmentation).
- 3) Several variables, such as the number of jets and their missing energy distributions, depend on this simultion.
- Jet multiplicity:
- 1) Without stop fragmentation: ≈70% 2-jet events
- 2) With stop fragmentation: ≈50% 2-jet events and larger number of multijet events

Sequential-Cut Analysis Results

	L=50fb-1 at √s=260GeV		L= 500fb-1 at √s=500GeV		
P(e-)/ P(e+)	Generated	0/0 +80%/-60%	Generated	0/0 +80%/-60%	
st ₁ st ₁ *	50000	382 921 <u>(24%eff.)</u>	50000	11300 26430(<u>19%eff</u> .)	
WW	180000	<5 <1	210000	102 9	
ZZ	30000	<2 <2	30000	250 224	
Wenu	210000	36 4	210000	10102 2994	
eeZ	210000	<1 <1	210000	<18 <15	
qq, q≠t	350000	<7 <8	350000	19 22	
tt	-	0 0	180000	21 19	
γγ	1.6 10 ⁶	12 12	8.5x10 ⁶	120 120	

Iterative Discriminant Analysis

Iterative Discriminant Analysis

Wev is dominant background.

IDA Analysis Results

	L=50fb ⁻¹ at √s=260GeV	L= 500fb ⁻¹ at √s=500GeV
P (e-)/ P(e+)	0/0 +80%/-60%	0/0 +80%/-60%
st ₁ st ₁ *	610 1470 <u>(38%eff</u> .)	21240 49700 (<u>36%eff</u> .)
WW	19 2	<41 <4
ZZ	7 7	67 60
Wenu	68 39	10640 3155
eeZ	10 8	<36 <30
qq, q≠t	30 32	<38 <43
tt	0 0	<3 <3
2-Photons	<25 <25	840 840

The signal over background ratios for the 260 and 500 GeV analyses improve with the IDA method.

Uncertainties on Y

Error source for Y	Cut-based Analysis
Statistical	4.1%
Detector Effects	1.15%
Jet number	1%
Charm Fragmentation	1.2%
Stop Fragmentation	2.4%
Charm tagging algorithm	<0.5%
Sum of Experimental Errors	5.2%
Theory for signal σ	5.5%
Theory for background σ	0.5%
Total error ΔY	7.2%

Mass Determination

- • ΔY =7.2% $\rightarrow \Delta m(stop) \sim 0.3$ GeV: (including theory uncertainty, which is expected to improve)
- • ΔY =5.2% $\rightarrow \Delta m(stop) \sim 0.2 \text{ GeV}$ (cut-based experimental errors alone)
- •Δ*Y*=4.2% → Δm(stop) ~ 0.15 GeV (IDA experimental errors alone with 1.2% stop fragment error) About a factor 7 better compared to previous analysis.

MSSM CDM Interpretation

Other limiting factors start to contribute, e.g. neutralino mass $\Delta m=0.3$ GeV.

Conclusions

- Scalar top quarks could be studied with precision at a future Linear Collider.
- Simulations for small stop-neutralino mass difference motivated by cosmology.
- Precision mass determination possible with a method using two center-of-mass energies, e.g. √s=260 and 500 GeV.
- This method can also be applied to other analyses to improve the mass resolution.
- Expected LC precision on Ω_{CDM} comparable to current cosmological (WMAP) measurements.