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Abstract. Finite Unified Theories (FUTs) are N=1 supersymmetric Grand Unified Theories that
can be made all-loop finite. The requirement of all-loop finiteness leads to a severe reduction of
the free parameters of the theory and, in turn, to a large number of predictions. Here SU(5) FUTs
are investigated in the context of low-energy phenomenology observables. We present a detailed
scanning of these FUTs, including theoretical uncertainties at the unification scale and applying all
phenomenological constraints. Taking into account the restrictions from the top and bottom quark
masses, we can discriminate between different models. Including further low-energy constraints
such as B physics observables, the bound on the lightest Higgs boson mass and the cold dark
matter density, we determine the predictions of the allowed parameter space for the Higgs boson
sector and the supersymmetric particle spectrum of the model.

PACS. 12.10.KtUnification of couplings; mass relations – 12.60.Jv Supersymmetric models

1 Introduction

Finite Unified Theories are N = 1 supersymmetric
Grand Unified Theories (GUTs) which can be made fi-
nite to all-loop orders, including the soft supersymme-
try breaking sector. To construct GUTs with reduced
independent parameters [1,2] one has to search for
renormalization group invariant (RGI) relations hold-
ing below the Planck scale, which in turn are preserved
down to the GUT scale. Of particular interest is the
possibility to find RGI relations among couplings that
guarantee finitenes to all-orders in perturbation the-
ory [3,4]. In order to achieve the latter it is enough
to study the uniqueness of the solutions to the one-
loop finiteness conditions [3,4]. The constructed finite
unified N = 1 supersymmetric SU(5) GUTs using the
above tools, predicted correctly from the dimensionless
sector (Gauge-Yukawa unification), among others, the
top quark mass [5]. The search for RGI relations and
finiteness has been extended to the soft supersymme-
try breaking sector (SSB) of these theories [6,7], which
involves parameters of dimension one and two. Even-
tually, the full theories can be made all-loop finite and
their predictive power is extended to the Higgs sector
and the s-spectrum.

Finiteness can be understood by considering a chi-
ral, anomaly free, N = 1 globally supersymmetric
gauge theory based on a group G with gauge coupling
constant g. The superpotential of the theory is given
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by

W =
1

2
mij Φi Φj +

1

6
Cijk Φi Φj Φk , (1)

where mij (the mass terms) and Cijk (the Yukawa
couplings) are gauge invariant tensors and the matter
field Φi transforms according to the irreducible rep-
resentation Ri of the gauge group G. All the one-loop
β-functions of the theory vanish if the β-function of the

gauge coupling β
(1)
g , and the anomalous dimensions of

the Yukawa couplings γ
j(1)
i , vanish, i.e.

∑

i

ℓ(Ri) = 3C2(G) ,
1

2
CipqC

jpq = 2δj
i g

2C2(Ri) ,

(2)
where ℓ(Ri) is the Dynkin index of Ri, and C2(G) is
the quadratic Casimir invariant of the adjoint repre-
sentation of G. A theorem [3] guarantees the vanishing
of the β-functions to all-orders in perturbation theory.
This requires that, in addition to the one-loop finite-
ness conditions (2), the Yukawa couplings are reduced
in favour of the gauge coupling. Alternatively, similar
results can be obtained [4,8] using an analysis of the
all-loop NSVZ gauge beta-function [9].

In the soft breaking sector, it was found that RGI
SSB scalar masses in Gauge-Yukawa unified models
satisfy a universal sum rule at one-loop [10]. This re-
sult was generalized to two-loops for finite theories
[11], and then to all-loops for general Gauge-Yukawa
and finite unified theories [12]. Then the following soft
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scalar-mass sum rule is found [11]

( m2
i + m2

j + m2
k )

MM †
= 1 +

g2

16π2
∆(1) + O(g4) (3)

for i, j, k with ρijk

(0) 6= 0, where ∆(1) is the two-loop

correction

∆(1) = −2
∑

l

[(m2
l /MM †) − (1/3)] ℓ(Rl), (4)

∆(1) vanishes for the universal choice, i.e. when all the
soft scalar masses are the same at the unification point.

2 FINITE UNIFIED THEORIES

The first one- and two-loop finite model was presented
in [13]. A predictive Gauge-Yukawa unified SU(5) model
which is finite to all orders, in addition to the require-
ments mentioned already, should also have the follow-
ing properties:

1. One-loop anomalous dimensions are diagonal, i.e.,

γ
(1) j
i ∝ δj

i .
2. Three fermion generations, in the irreducible rep-

resentations 5i,10i (i = 1, 2, 3), which obviously
should not couple to the adjoint 24.

3. The two Higgs doublets of the MSSM should mostly
be made out of a pair of Higgs quintet and anti-
quintet, which couple to the third generation.

In the following we discuss two versions of the all-
order finite model. The model of ref. [5], which will be
labeled A, and a slight variation of this model (labeled
B), which can also be obtained from the class of the
models suggested in ref. [14] with a modification to
suppress non-diagonal anomalous dimensions.

The superpotential which describes the two models
takes the form [5,11]

W =
3∑

i=1

[
1

2
gu

i 10i10iHi + gd
i 10i5i Hi ]

+ gu
23 102103H4 + gd

23 10253 H4 + gd
32 10352 H4

+

4∑

a=1

gf
a Ha 24Ha +

gλ

3
(24)3 , (5)

where Ha and Ha (a = 1, . . . , 4) stand for the Higgs
quintets and anti-quintets.

The non-degenerate and isolated solutions to γ
(1)
i =

0 for the models {A , B} are:

(gu
1 )2 = {

8

5
,
8

5
}g2 , (gd

1)2 = {
6

5
,
6

5
}g2 ,

(gu
2 )2 = (gu

3 )2 = {
8

5
,
4

5
}g2 , (6)

(gd
2)2 = (gd

3)2 = {
6

5
,
3

5
}g2 ,

(gu
23)

2 = {0,
4

5
}g2 , (gd

23)
2 = (gd

32)
2 = {0,

3

5
}g2 ,

(gλ)2 =
15

7
g2 , (gf

2 )2 = (gf
3 )2 = {0,

1

2
}g2 ,

(gf
1 )2 = 0 , (gf

4 )2 = {1, 0}g2 .

According to the theorem of ref. [3] these models are
finite to all orders. After the reduction of couplings the
symmetry of W is enhanced [5,11].

The main difference of the models A and B is that
three pairs of Higgs quintets and anti-quintets couple
to the 24 for B so that it is not necessary to mix them
with H4 and H4 in order to achieve the triplet-doublet
splitting after the symmetry breaking of SU(5).

In the dimensionful sector, the sum rule gives us
the following boundary conditions at the GUT scale
[11]:

m2
Hu

+ 2m2
10

= m2
Hd

+ m2
5

+ m2
10

= M2 for A ;(7)

m2
Hu

+ 2m2
10

= M2 , m2
Hd

− 2m2
10

= −
M2

3
,

m2
5

+ 3m2
10

=
4M2

3
for B, (8)

where we use as free parameters m
5
≡ m

53
and m10 ≡

m103
for the model A, and m10 ≡ m103

for B, in
addition to M .

3 PREDICTIONS OF LOW ENERGY

PARAMETERS

Since the gauge symmetry is spontaneously broken be-
low MGUT, the finiteness conditions do not restrict
the renormalization properties at low energies, and all
it remains are boundary conditions on the gauge and
Yukawa couplings (6), the h = −MC relation, and
the soft scalar-mass sum rule (3) at MGUT, as applied
in the two models. Thus we examine the evolution of
these parameters according to their RGEs up to two-
loops for dimensionless parameters and at one-loop for
dimensionful ones with the relevant boundary condi-
tions. Below MGUT their evolution is assumed to be
governed by the MSSM. We further assume a unique
supersymmetry breaking scale Ms (which we define as
the geometric mean of the stop masses) and therefore
below that scale the effective theory is just the SM.

We now present the comparison of the predictions
of the four models with the experimental data, see
ref. [15] for more details, starting with the heavy quark
masses. In fig.1 we show the FUTA and FUTB pre-
dictions for Mtop and mbot(MZ) as a function of the
unified gaugino mass M , for the two cases µ < 0 and
µ > 0. In the value of the bottom mass mbot, we have
included the corrections coming from bottom squark-
gluino loops and top squark-chargino loops [16]. We
give the predictions for the running bottom quark mass
evaluated at MZ , mbot(MZ) = 2.825 ± 0.1 [17], to
avoid the large QCD uncertainties inherent for the
pole mass. The value of mbot depends strongly on
the sign of µ due to the above mentioned radiative
corrections. For both models A and B the values for
µ > 0 are above the central experimental value, with
mbot(MZ) ∼ 4.0 − 5.0 GeV. For µ < 0, on the other
hand, model B has overlap with the experimental al-
lowed values, mbot(MZ) ∼ 2.5− 2.8 GeV, whereas for
model A, mbot(MZ) ∼ 1.5 − 2.6 GeV, there is only a
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Fig. 1. The bottom quark mass at the Z boson scale (up-
per) and top quark pole mass (lower plot) are shown as
function of M for both models.

small region of allowed parameter space at two sigma
level, and only for large values of M . This clearly se-
lects the negative sign of µ.

The predictions for the top quark mass Mtop are
∼ 183 and ∼ 172 GeV in the models A and B respec-
tively, as shown in the lower plot of fig. 1. Comparing
these predictions with the most recent experimental
value M exp

top = (170.9 ± 1.8) GeV [18], and recalling
that the theoretical values for Mtop may suffer from a
correction of ∼ 4% [19], we see that clearly model B is
singled out. In addition the value of tanβ is found to
be tan β ∼ 54 and ∼ 48 for models A and B, respec-
tively. Thus the comparison of the model predictions
with the experimental data is survived only by FUTB

with µ < 0.

We now analyze the impact of further low-energy
observables on the model FUTB with µ < 0. In the
case where all the soft scalar masses are universal at
the unfication scale, there is no region of M below
O(few TeV) in which mτ̃ > mχ0 is satisfied (where
mτ̃ is the lightest τ̃ mass, and mχ0 the lightest neu-
tralino mass). But once the universality condition is
relaxed this problem can be solved naturally, thanks
to the sum rule (3). Using this equation and imposing
the conditions of (a) successful radiative electroweak
symmetry breaking, (b) m2

τ̃ > 0 and (c) mτ̃ > mχ0 , a
comfortable parameter space is found for FUTB with
µ < 0 (and also for FUTA and both signs of µ).
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Fig. 2. The lightest Higgs mass, Mh, as function of M for
the model FUTB with µ < 0, see text.

As additional constraints we consider the follow-
ing observables: the rare b decays BR(b → sγ) and
BR(Bs → µ+µ−), the lightest Higgs boson mass as
well as the density of cold dark matter in the Uni-
verse, assuming it consists mainly of neutralinos. More
details and a complete set of references can be found
in ref. [15].

For the branching ratio BR(b → sγ), we take the
present experimental value estimated by the Heavy
Flavour Averaging Group (HFAG) is [20]

BR(b → sγ) = (3.55 ± 0.24+0.09
−0.10 ± 0.03)× 10−4, (9)

where the first error is the combined statistical and
uncorrelated systematic uncertainty, the latter two er-
rors are correlated systematic theoretical uncertainties
and corrections respectively.

For the branching ratio BR(Bs → µ+µ−), the SM
prediction is at the level of 10−9, while the present
experimental upper limit from the Tevatron is 5.8 ×
10−8 at the 95% C.L. [21], providing the possibility
for the MSSM to dominate the SM contribution.

Concerning the lightest Higgs boson mass, Mh, the
SM bound of 114.4 GeV [22] can be used. For the pre-
diction we use the code FeynHiggs [23,24,25,26].

The lightest supersymmetric particle (LSP) is an
excellent candidate for cold dark matter (CDM) [27],
with a density that falls naturally within the range

0.094 < ΩCDMh2 < 0.129 (10)

favoured by a joint analysis of WMAP and other as-
trophysical and cosmological data [28].

The prediction for Mh of FUTB with µ < 0 is
shown in fig. 2. The constraints from the two B physics
observables are taken into account. In addition the
CDM constraint (evaluated with Micromegas [29]) is
fulfilled for the lighter (green) points in the plot, see
ref. [15] for details. The lightest Higgs mass ranges in

Mh ∼ 121 − 126 GeV, (11)

where the uncertainty comes from variations of the
soft scalar masses, and from finite (i.e. not logarith-
mically divergent) corrections in changing renormal-
ization scheme. To this value one has to add ±3 GeV
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coming from unkonwn higher order corrections [25].
We have also included a small variation, due to thresh-
old corrections at the GUT scale, of up to 5% of the
FUT boundary conditions. Thus, taking into account
the B physics constraints (and possibly the CDM con-
straints) results naturally in a light Higgs boson that
fulfills the LEP bounds [22].

In the same way the whole SUSY particle spectrum
can be derived. The resulting SUSY masses for FUTB

with µ < 0 are rather large. The lightest SUSY particle
starts around 500 GeV, with the rest of the spectrum
being very heavy. The observation of SUSY particles
at the LHC or the ILC will only be possible in very
favorable parts of the parameter space. For most pa-
rameter combination only a SM-like light Higgs boson
in the range of eq. (11) can be observed.

We note that with such a heavy SUSY spectrum
the anomalous magnetic moment of the muon, (g − 2)µ

(with aµ ≡ (g − 2)µ/2), gives only a negligible cor-
rection to the SM prediction. The comparison of the
experimental result and the SM value [30]

aexp
µ − atheo

µ = (27.5 ± 8.4) × 10−10. (12)

would disfavor FUTB with µ < 0 by about 3 σ. How-
ever, since the SM is not regarded as excluded by
(g − 2)µ, we still see FUTB with µ < 0 as the only
surviving model. A more detailed numerical analysis,
also using Suspect [31] for the RGE running, and in-
cluding all theory uncertainties for the models will be
presented in ref. [15].
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supported in part by the European Commission under
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