The Randall-Sundrum model and high pT tops

Ben Lillie

Argonne / University of Chicago

Outline

B. Lillie, L. Randall, L. Wang hep-ph/0701166 B. Lillie, J. Shu, T. Tait 0706.3960

- Description of the RS model
- Importance of top quarks
- Model variations
- Probes of model properties
- Outlook

See also: Agashe, Belyaev, Krupovnickas, Perez, Virzi hep-ph/0612015

The Randall-Sundrum model

L. Randall, R. Sundrum hep-ph/9905221

 $M \to e^{-\pi k r_c}$

- Five dimensions
- Extra dimention is "warped"
- Warping scales masses, solving the hierarchy problem
- Parameters are natural

W. Goldberger and M. Wise hep-ph/9907447

Standard Model fields

H. Davoudiasl, J. Hewett, T. Rizzo hep-ph/9911262 A. Pomarol hep-ph/9911294

- SM fields in bulk to suppress dangerous operators
 - Gauge fields must be in bulk
- Provides explanation of flavor hierarchy
- Structure constrained by SM precision observables
 - $Z \rightarrow b\bar{b}$ dominant constraint

Kaluza-Klein states

- KK states are IR localized
- Universal couplings to light fermions
- Large coupling to top

$$g_{f\bar{f}g^{(1)}} \sim 0.2g_s$$
 $g_{Q^3\bar{Q}^3g^{(1)}} \sim g_s$
 $g_{t_R\bar{t}_Rg^{(1)}} \sim 4g_s$

Kaluza-Klein states

- KK states are IR localized
- Universal couplings to light fermions
- Large coupling to top

$$g_{f\bar{f}g^{(1)}} \sim 0.2g_s$$
 $g_{Q^3\bar{Q}^3g^{(1)}} \sim g_s$
 $g_{t_R\bar{t}_Rg^{(1)}} \sim 4g_s$

All gauge KK states decay predominantly to top pairs!

Top pairs from KK gluons

Cross-section at LHC reasonable, limited by small coupling to light fermions, and lack of glue-glue coupling

- Nice signal above SM top production
 - PDF and stat. errors shown, assuming 100
- Width/Mass ~17%

 M_{tt} (GeV) $M_{+}\overline{+}$

Other model variants

IR brane terms

Davoudiasl, Hewett, Rizzo hep-ph/0212279 Carena, Ponton, Tait, Wagner, hep-ph/0212307

July 26, 2007 SUSY 07

7 /20

Other model variants

Custodial symmetry for $Z \rightarrow b \bar{b}$

- Produces new light fermions
- KK gluon can decay into N new states

Agashe, Contino, Da Rold, Pomarol, hep-ph/0605341

July 26, 2007

Bottom quark coupling

- Measure b associated production
- Probe of b localization

Tevatron constraints

~ 950 GeV

Used narrow-width approximation, so constraint is qualitative, but probably improves with proper treatment

M. Kagan, D. Amidei, C. Cully, T. Schwarz, M. Soderberg (Michigan)

http://www-cdf.fnal.gov/physics/new/top/2006/mass/mttb/pub/page.htm

Top collimation

Threshold production

High mass production

Top collimation

High mass production

- Tops can be highly boosted
- Can they be resolved into separate objects for top ID and reconstruction?

Top collimation (cont.)

2 TeV resonance

Separation: $\Delta R > 0.4$

One top completely collimated

6 isolated decay products

July 26, 2007

Top collimation (cont.)

4 TeV resonance

One top completely collimated

6 isolated decay products

Compare to dijets?

- Possibly significant at lower masses
 - Very challenging!
- Would like a way to identify tops, even if collimated
- In some models may be the discovery mode

Finding collimated $t \bar t$

First demonstration

Agashe, Belyaev, Krupovnickas, Perez, Virzi hep-ph/0612015

found leptons inside jets

See also: U. Baur, L. Orr 0707.2006

Used isolated leptons
jet mass cut
note long tail for k_T algorithm

Finding collimated $t \bar t$

First demonstration

Agashe, Belyaev, Krupovnickas, Perez, Virzi hep-ph/0612015

found leptons inside jets

See also: U. Baur, L. Orr 0707.2006

Used isolated leptons
jet mass cut
note long tail for k_T algorithm

More work ongoing!

Top helicity

- Tops from KK decays are right-polarized
- Other models where they are left-polarized
 - e.g. Carena et. al. hep-ph/0607106
 Agashe, Contino, Da Rold, Pomarol, hep-ph/0605341

Sign of the couplings

Sign of the couplings

$$A_{i} = -\frac{\int dm \left(\frac{d\sigma}{dm} - \frac{d\sigma}{dm}_{SM}\right) * \epsilon (m - M_{g(1)})}{\int dm \left|\frac{d\sigma}{dm} - \frac{d\sigma}{dm}_{SM}\right|}$$

$g^{(1)}$ Mass	plus	minus
2 TeV	0.57	-0.44
3 TeV	0.54	-0.28
4 TeV	0.52	-0.16

(parton level without efficiencies, just an illustration)

Possibilities at the ILC

- No s-channel gluon production. Gives direct access to EW KK states
 - Disentangle KK gluons from EW bosons
- Unlikely to have on-shell production, but not necessarily problematic
 - See, e.g. TESLA TDR
- Better top helicity measurement?

Outlook

- Another reminder that large resonances can occur in models that solve the hierarchy problem
- Example of a model where almost all new physics appears in hadronic channels
- Possible to extract interesting, qualitative features that probe the model structure.
 - Couplings to top and bottom
 - Light fermion coupling sign