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Environmental Selection

• Galactic Principle

No galaxies if cosmological constant larger than  (~100 times) observed value
[Weinberg]

• Dark Matter Mass

Halo formation (& star/galaxy formation) fix dark matter density to within an
order of magnitude

[Hellerman & Walcher; Tegmark et al.]

• Atomic Principle

No complex chemistry if Higgs vev larger than (~5 times) observed value

[Agrawal, Barr, Donoghue and Seckel]



Environmental Selection

Consider models with unnatural parameters

Landscape provides a natural framework for environmental
selection



Split Supersymmetry

MSUSY

1016 TeV
Planck scale

1 TeV
Weak scale

10-15 TeV

[Arkani-Hamed & Dimopoulos]

C.C. scale
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Minimal Model

Standard Model plus two ‘Higgsinos’

⇒ gauge coupling unification

[Mahbubani & Senatore; Cirelli, Fornengo & Strumia ]

Add ‘bino’ to split mass

⇒ direct detection okay

100 keV

Minimal Model

• Unification

• Dark matter mass:

         100 GeV - 2 TeV

• 2 fine-tunings:

        Higgs mass & C.C.



Technical Naturalness

Split SUSY:  R-symmetry

Minimal model: Ad hoc dynamical mechanism

Technical naturalness invoked to keep fermionic dark matter light

Use of technical naturalness might be misleading for relevant couplings
that determine large-scale structure of the Universe

⇒ How is R-symmetry breaking explicitly communicated to fermions?

⇒ What is the high energy theory?



Six Higgs Doublet Model

•  H5 interacts with Standard Model gauge bosons, but not fermions

Standard Model Particles

Q, Uc, Dc, L, Ec

W± , Z, G, γ

Standard
Model Higgs

New Scalar
Doublet

+

• H5 charged under 5 representation of discrete symmetry group (i.e., S6)

• Standard Model particles are neutral under this symmetry

• H5 does not acquire a vev:



Unification
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• Unification is key motivation
for introducing the five-plet H5

• Threshold correction

      m2/m3 ~ 30        6 Higgs    

      m3/m2 ~ 20         MSSM

• Proton decay too rapid in SU(5) GUT:



Mass Spectrum

Electroweak symmetry
breaking

Breaks accidental U(1)
symmetry

Mass Spectrum

a5
0

s5
0

ϕ5
±

h0

five-plet

• λ4 and λ5 determine scalar
mass splittings

• a5 is lightest neutral particle
and serves as the dark matter
candidate



Renormalization Group Effects

• Landscape gives many possibilities for couplings at GUT scale.
What are the typical values in our neighborhood of vacua?

GUT scale

λ’s

• Distribution of couplings is a UV sensitive question

renormalization
flow

electroweak scale

λ’s

• Large range of couplings at high energies is compressed at low energies



Parameter Space Democracy

• Allowed region for quartics at
electroweak scale is small:

• perturbativity

• positive SM Higgs mass

• vacuum stability

All couplings at GUT scale are equally likely
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• Couplings approach tracking solution very quickly

Example:  λ1 large at GUT scale, self-coupling term dominates at low energy



Supersymmetry

• Each low-energy Higgs doublet comes
from chiral superfield

• Two angles β and β5 give orientation of
scalars within superfield

Quartic couplings arise from D-terms

• Smaller couplings at high energies as
compared to parameter space
democracy

•  Even smaller range at low
energy
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Renormalization Effects

     Parameter space democracy            SUSY PSD: Large range, peaked at 200 GeV

SUSY: Small range ~ 155 GeV
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Relic Abundance

     Parameter space democracy            SUSY

Diboson production

Higgs Resonance



Direct Detection

• Inelastic scattering between a5 and s5 bounds
mass splitting

a5

s5 q

q

Z0

a5

a5
q

q

h0

• Elastic scattering between a5 and a5 dominates
spin-independent contribution



Direct Detection

     Parameter space democracy            SUSY



Indirect Detection

“Particle physics” “Astrophysics”

 Monochromatic photons produced by WIMP annihilation

• Flux observed by a telescope with a field of view ΔΩ and line of sight Ψ(θ,φ):

Low-mass dark matter (~80 GeV)
γ γ

a5 a5

h0

High-mass dark matter (≥ 200 GeV)
γ γ

a5 a5

W+

ϕ5
+

ϕ5
+

ϕ5
-



Indirect Detection

High-mass dark matter (≥ 200 GeV)

When ma ~ mϕ , there is an effective Yukawa force
between the ϕ5

+ ϕ5
- pair:

Charged scalars form a bound-state solution to the non-
relativistic Schrodinger equation.



Indirect Detection

NFW profile

     Parameter space democracy            SUSY



Decay of the Standard Model Higgs

• New invisible decay modes for SM Higgs

• One of the most promising discovery channels

     Parameter space democracy            SUSY



Signatures at the LHC
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Estimate signal for sample point in parameter space

• Choose leptonic branching channels for off-shell gauge bosons

• With cuts, may be possible to detect signal for low-mass dark matter



Conclusions

• Introduce electroweak doublet with discrete symmetry to Standard Model

• Unification & dark matter

• Two ranges for dark matter mass:   light (~ 80 GeV) and heavy (> 200 GeV)

ILC?LHCDirect Production

No luckTevatron,
LHC

SM Higgs Decay

GLAST,
HESS

GLAST,
HESS

Indirect Detection

SuperCDMSCDMS IIDirect Detection

Heavy
ma >200 GeV

Light
ma ~ 80 GeV





Galactic Principle

[Weinberg]

aeq atodayanl

     No galaxies if C.C. larger than  (~100 times) observed value



Atomic Principle

[Agrawal, Barr, Donoghue and Seckel]

1.5 5

proton decay neutron decay p(uud) → Δ++(uuu)

Complex chemistry if Higgs vev ~ factor of 5 of its observed value



Dark Matter Bound

Environmental selection bounds on       ?

Nonlinear regime should set in before C.C. expansion takes over:

aeq anl

Scale factor a(t)

 δ ∝ a
when matter density dominates



Dark Matter Bound

δeq suppressed for large-scale modes

aeq anl

Scale factor a(t)



Dark Matter Bound

[Hellerman & Walcher]
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Dark Matter Bound

• Interaction rate of WIMPs

• Annihilation cross section for WIMPs



Unification

• Embed theory in 5D orbifold GUT

• configuration of fields in extra
dimensions can suppress proton
decay

• Trinification: SU(3)Cx SU(3)Lx SU(3)R broken ~ 1014 GeV

• proton decay via gauge bosons is forbidden

SU(5)

SU(3)xSU(2)xU(1)

[Mahbubani & Senatore; de Rújula, Georgi, & Glashow]

Potential mechanisms for suppressing proton decay rate

SU(5)



Constraints on Quartics

• Stability of potential in all field directions at
all energy scales:

V(µ) > 0

Stable Vacuum

Unstable Vacuum

• Direct detection bound:

• Experimental bound on Higgs mass:

• Require that WIMP remains neutral:



Parameter Space Democracy

λ1(mz)

λ e
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     Parameter space democracy            SUSY

SM Higgs Mass

Large range, peaked at ~ 200 GeV



Coannihilation

0.1

804 200

Higgs resonance

ma ~ 80 GeV h0

Diboson production

ma > 80 GeV

W±, Z W±, Z

ma < 80 GeV

fermion fermion

h0,
Z0,…



Coannihilation

Freeze-out

Dilution from expansion of universe

• Boltzmann equation is

Particle annihilation

• When temperature is on the order of the mass splittings,

• interactions including s5 and ϕ5
± can become

important in determining relic density of a5

a5
0

s5
0

ϕ5
±

~ T



Dark Matter Bounds



Inelastic Scattering

• Inelastic scattering between nearly-degenerate
a5 and s5 may also contribute to spin-independent
cross section

[Smith & Weiner]

• Inelastic scattering may reconcile conflicting
results from DAMA and CDMS

• mN larger for DAMA → higher cutoff for
mass splittings that can be observed



Electroweak Precision Tests

Are masses and quartics consistent with electroweak data?

    1σ bound

ΔS

ΔT

0

0.2

-0.05-0.1
       ma > 200 GeV              ma ~ 80 GeV

• Heavy dark matter fits well within the
experimental bound

• Some of the light dark matter region
excluded experimentally

• For small mass differences, corrections to S and T parameters are



Signatures at the LHC

p p → a5
0 ϕ5

±

W± a5
0

p p → a5
0 s5

0

Z0 a5
0

p p → s5
0 ϕ5

±

Z0 W± 2a5
0

p p → ϕ5
± ϕ5

±

2W± 2a5
0

H5 scalars may be produced at the LHC

• Gauge bosons are always off-shell

• Opposite-sign leptons + ET



Direct Detection

     Parameter space democracy            SUSY



Indirect Detection

Low-mass dark matter (~80 GeV)

s-channel Higgs exchange dominates over box diagrams


