Unification and Dark Matter in a

Minimal Scalar Extension of the Standard Model

(arXiv:0704.2816)

Mariangela Lisanti and Jay G. Wacker SLAC, Stanford University

July 28, 2007

Outline

- I. Unnatural Models
- II. Six Higgs Doublet Model
- III. Renormalization Group Influence on Low Energy Spectrum
- IV. Dark Matter Discovery

Environmental Selection

• Galactic Principle

No galaxies if cosmological constant larger than (~100 times) observed value [Weinberg]

• Atomic Principle

No complex chemistry if Higgs vev larger than (~5 times) observed value

$$m_{
m neutron} - m_{
m proton} \propto v$$

[Agrawal, Barr, Donoghue and Seckel]

Dark Matter Mass

Halo formation (& star/galaxy formation) fix dark matter density to within an order of magnitude

[Hellerman & Walcher; Tegmark et al.]

Environmental Selection

Landscape provides a natural framework for environmental selection

Consider models with unnatural parameters

Split Supersymmetry

Split Supersymmetry

Minimal Model

Standard Model plus two 'Higgsinos'

⇒ gauge coupling unification

Add 'bino' to split mass

⇒ direct detection okay

Minimal Model

- Unification
- Dark matter mass:

100 GeV - 2 TeV

• 2 fine-tunings:

Higgs mass & C.C.

Technical Naturalness

Technical naturalness invoked to keep fermionic dark matter light

Split SUSY: R-symmetry

⇒ How is R-symmetry breaking explicitly communicated to fermions?

Minimal model: Ad hoc dynamical mechanism

 \Rightarrow What is the high energy theory?

Use of technical naturalness might be misleading for relevant couplings that determine large-scale structure of the Universe

Six Higgs Doublet Model

- H₅ charged under 5 representation of discrete symmetry group (i.e., S₆)
 - Standard Model particles are neutral under this symmetry

• H₅ does not acquire a vev:
$$h = \begin{pmatrix} 0 \\ v + h^0/\sqrt{2} \end{pmatrix}$$
 $H_5 = \begin{pmatrix} \phi_5^+ \\ (s_5^0 + ia_5^0)/\sqrt{2} \end{pmatrix}$

• H₅ interacts with Standard Model gauge bosons, but not fermions

Unification

- Unification is key motivation for introducing the five-plet H_5
- Threshold correction

$$m_2/m_3 \sim 30$$

6 Higgs

$$m_3/m_2 \sim 20$$

MSSM

• Proton decay too rapid in SU(5) GUT:

$$\Gamma(p \to e^+ \pi^0) \simeq rac{lpha_{
m GUT}^2 m_p^5}{M_{GUT}^4} \simeq 10^{-28} {
m yr}^{-1}$$

Mass Spectrum

$$V \supset \lambda_1(|h|^2 - 2v^2)|h|^2 + \lambda_4|h^\dagger H_n|^2 + \lambda_5((h^\dagger H_n)^2 + \text{h.c.})$$
Electroweak symmetry
breaking

Breaks accidental U(1)
symmetry

- λ_4 and λ_5 determine scalar mass splittings
- a₅ is lightest neutral particle and serves as the dark matter candidate

Renormalization Group Effects

- Landscape gives many possibilities for couplings at GUT scale. What are the typical values in our neighborhood of vacua?
- Distribution of couplings is a UV sensitive question
 - Large range of couplings at high energies is compressed at low energies

Parameter Space Democracy

All couplings at GUT scale are equally likely

- Allowed region for quartics at electroweak scale is small:
 - perturbativity
 - positive SM Higgs mass
 - vacuum stability

Couplings approach tracking solution very quickly

Example: λ_1 large at GUT scale, self-coupling term dominates at low energy

$$\lambda_1^{
m max} \simeq rac{16\pi^2}{24t_{
m GUT}} \sim 0.24$$

Supersymmetry

Quartic couplings arise from D-terms

- Each low-energy Higgs doublet comes from chiral superfield
- Two angles β and β_5 give orientation of scalars within superfield

$$|\Phi_h| = c_eta h - s_eta ilde h$$

$$|\Phi_{H_5}|=c_{eta_5}H_5-s_{eta_5} ilde{H}_5$$

- Smaller couplings at high energies as compared to parameter space democracy
 - Even smaller range at low energy

Renormalization Effects

Parameter space democracy

SUSY

PSD: Large range, peaked at 200 GeV

SUSY: Small range ~ 155 GeV

Outline

- I. Unnatural Models
- II. Six Higgs Doublet Model
- III. Renormalization Group Influence on Low Energy Spectrum
- IV. Dark Matter Discovery

Relic Abundance

Direct Detection

• Inelastic scattering between a_5 and s_5 bounds mass splitting

$$\Delta m_{s^0 a^0} \simeq 100 \text{ keV}$$

• Elastic scattering between a_5 and a_5 dominates spin-independent contribution

$$\sigma_n = 2 \times 10^{-9} \text{ pb } \left(\frac{\lambda_{\text{eff}}}{0.4}\right)^2 \left(\frac{350 \text{ GeV}}{m_{a^0}}\right)^2 \left(\frac{200 \text{ GeV}}{m_{h^0}}\right)^4$$

Direct Detection

Monochromatic photons produced by WIMP annihilation

• Flux observed by a telescope with a field of view $\Delta\Omega$ and line of sight $\Psi(\theta,\phi)$:

$$\Phi \propto \left(\frac{\sigma_{\gamma\gamma}u}{1\mathrm{p}b}\right) \left(\frac{100\mathrm{G}eV}{m_{a^0}}\right)^2 \bar{J}(\Psi,\Delta\Omega)\Delta\Omega$$
 "Particle physics" "Astrophysics"

Low-mass dark matter (~80 GeV)

High-mass dark matter (≥ 200 GeV)

High-mass dark matter (≥ 200 GeV)

When $m_a \sim m_\phi$, there is an effective Yukawa force between the ${\phi_5}^+ \, {\phi_5}^-$ pair:

$$V(r) \sim -\alpha_2 \frac{e^{-M_w r}}{r}$$

Charged scalars form a bound-state solution to the non-relativistic Schrodinger equation.

$$egin{aligned} \sigma(a_5 a_5
ightarrow \gamma \gamma) u &= \left[\sigma(a_5 a_5
ightarrow \mathrm{BS}) u
ight] \Gamma(\mathrm{BS}
ightarrow \gamma \gamma) \ &\sim rac{lpha^2 lpha_2^2}{N_h M_\mathrm{w}^2} \left(1 + \sqrt{rac{2 m_a \Delta m_{\phi a}}{M_\mathrm{w}^2}}
ight) \end{aligned}$$

■ Parameter space democracy ■ SUSY

Decay of the Standard Model Higgs

- New invisible decay modes for SM Higgs
- One of the most promising discovery channels

 a_5,s_5,ϕ_5^-

Signatures at the LHC

Estimate signal for sample point in parameter space

- Choose leptonic branching channels for off-shell gauge bosons
- With cuts, may be possible to detect signal for low-mass dark matter

$$\sigma_{background} = \sigma(pp \to WW) \text{Br}(W \to l\nu)^2 + \sigma(pp \to ZZ) \text{Br}(Z \to l^+l^-) \text{Br}(Z \to \nu\nu)$$

Conclusions

- Introduce electroweak doublet with discrete symmetry to Standard Model
 - Unification & dark matter
- Two ranges for dark matter mass: light (~ 80 GeV) and heavy (> 200 GeV)

	Light	Heavy	
	$m_a \sim 80 \; GeV$	m _a >200 GeV	
Direct Detection	CDMS II	SuperCDMS	
Indirect Detection	GLAST, HESS	GLAST, HESS	
SM Higgs Decay	Tevatron, LHC	No luck	
Direct Production	LHC	ILC?	

Galactic Principle

$$ho_\Lambda \lesssim
ho_{
m nl}$$

No galaxies if C.C. larger than (~100 times) observed value

Atomic Principle

$$m_n - m_p = (\underbrace{m_d - m_u}) - \underbrace{E_{em}}_{1.7 \text{ MeV}}$$

Complex chemistry if Higgs vev ~ factor of 5 of its observed value

Environmental selection bounds on $\xi = \rho_{\rm dm}/\rho_{\rm b}$?

Nonlinear regime should set in before C.C. expansion takes over: $\rho_{\Lambda} \lesssim \rho_{\rm nl}$

when matter density dominates

$$ho_{
m nl} =
ho_{
m eq} \Big(rac{a_{
m eq}}{a_{
m nl}}\Big)^3 =
ho_{
m eq} \delta_{
m eq}^3$$

 δ_{eq} suppressed for large-scale modes

$$\delta_{
m eq} \sim \delta_o \Biggl(rac{\lambda}{H_{
m eq}^{-1}}\Biggr)^{-2} \sim \delta_o \xi^{-8}$$

• Annihilation cross section for WIMPs

$$\langle \sigma v
angle \sim rac{lpha_w^2}{m_{
m wimp}^2}$$

• Interaction rate of WIMPs

$$\Gamma = \langle \sigma v \rangle n_{\rm wimp} = \langle \sigma v \rangle \frac{\rho_{\rm dm}}{m_{\rm wimp}}$$

Unification

Potential mechanisms for suppressing proton decay rate

- Embed theory in 5D orbifold GUT
 - configuration of fields in extra dimensions can suppress proton decay

- Trinification: $SU(3)_C \times SU(3)_L \times SU(3)_R$ broken $\sim 10^{14}$ GeV
 - proton decay via gauge bosons is forbidden

Constraints on Quartics

• Stability of potential in all field directions at all energy scales:

$$V(\mu) > 0$$

- Direct detection bound: $|\lambda_5| \gtrsim 10^{-6}$
- Experimental bound on Higgs mass: $\lambda_1 \gtrsim 0.107$
- Require that WIMP remains neutral: $\lambda_4 2|\lambda_5| < 0$

Parameter Space Democracy

SM Higgs Mass

Large range, peaked at $\sim 200 \text{ GeV}$

Coannihilation

Coannihilation

• Boltzmann equation is

$$\frac{dn}{dt} = -3Hn - \langle \sigma v \rangle [n^2 - (n^{eq})^2]$$
Particle annihilation

Dilution from expansion of universe

- When temperature is on the order of the mass splittings,
 - interactions including s_5 and ϕ_5^{\pm} can become important in determining relic density of a_5

Inelastic Scattering

• Inelastic scattering between nearly-degenerate a_5 and s_5 may also contribute to spin-independent cross section

$$\Delta m_{s^0 a^0} \simeq 100 \text{ keV}$$

• Inelastic scattering may reconcile conflicting results from DAMA and CDMS

$$\Delta m_{s^0 a^0} < rac{eta^2 m_{a^0} m_{
m N}}{2(m_{a^0} + m_N)}$$

• m_N larger for DAMA \rightarrow higher cutoff for mass splittings that can be observed

Electroweak Precision Tests

Are masses and quartics consistent with electroweak data?

• For small mass differences, corrections to S and T parameters are

$$\Delta T \propto rac{5}{m_a lpha v^2} (m_{\phi^\pm} - m_a) (m_{\phi^\pm} - m_s) \qquad \Delta S \propto rac{5 v^2}{m_a^2} \lambda_4$$

- Heavy dark matter fits well within the experimental bound
- Some of the light dark matter region excluded experimentally

Signatures at the LHC

H₅ scalars may be produced at the LHC

$$p p \rightarrow a_5^0 s_5^0$$

$$p p \rightarrow a_5^0 \phi_5^{\pm}$$

$$W^{\pm} a_5^0$$

$$p p \rightarrow s_5^0 \phi_5^{\pm}$$

$$Z^0 W^{\pm} 2a_5^0$$

$$p p \rightarrow \phi_5^{\pm} \phi_5^{\pm}$$

$$2W^{\pm} 2a_5^0$$

- Gauge bosons are always off-shell
 - Opposite-sign leptons $+ E_T$

Direct Detection

$$\sigma_n = 2 \times 10^{-9} \text{ pb } \left(\frac{\lambda_{\text{eff}}}{0.4}\right)^2 \left(\frac{350 \text{ GeV}}{m_{a^0}}\right)^2 \left(\frac{200 \text{ GeV}}{m_{h^0}}\right)^4$$

Low-mass dark matter (~80 GeV)

s-channel Higgs exchange dominates over box diagrams

