Local SUSY-breaking minima in $N_f=N_c$ SQCD?

based on [hep-th] 0705.1074

Andrey Katz

Work done with Yael Shadmi and Tomer Volansky

Technion-Israel Institute of Technology

Outline

- 1. ISS review and $N_f = N_c$ conjecture
- 2. Another deformation, saddle point
- 3. Phenomenological consequences
- 4. Conclusions

ISS review

Itriligator, Seiberg, Shih, 2006

- framework $SU(N_c)$ SQCD; $N_c+1\leq N_f<\frac{3}{2}N_c$, $W_{\rm tree}=(m_Q)_{ij}\bar{Q}_iQ_j$ and ${\rm rank}[m_Q]>N_c$
- 6 SUSY-breaking local minimum near the origin
- magnetic dual: SUSY is broken by rank condition
- possesses SUSY vacuum

Demand $m_Q \ll \Lambda$ to get

- calculablity
- SUSY vacuum far from the orgin ⇒ metastability

$N_f = N_c$ conjecture

ISS approach:

- 6 take $N_f = N_c + 1$, local SUSY-breaking minimum exists
- 6 consider the limit $(m_Q)_{N_f,N_f} o \infty$
- 6 conjecture: $N_f = N_c$ has a similar vacuum,

$N_f = N_c$ conjecture

ISS approach:

- 6 take $N_f = N_c + 1$, local SUSY-breaking minimum exists
- 6 consider the limit $(m_Q)_{N_f,N_f} \to \infty$
- 6 conjecture: $N_f = N_c$ has a similar vacuum,

but $N_f = N_c$ is very different

- 6 $N_F > N_c$: $\frac{m_Q}{\Lambda} \ll 1 \Rightarrow$ non-calculable terms (Kähler) are under control
- 6 $N_f = N_c$: m_Q/Λ small, but Kähler is not under control

Why is $N_f = N_c$ so different? Kähler potential

Kähler metric

$$g_{MM^{\dagger}}^{-1} \sim \frac{\operatorname{Tr}M^{\dagger}M}{\Lambda^{2}} + \frac{\operatorname{Tr}M\operatorname{Tr}M^{\dagger}}{\Lambda^{2}} + \frac{(B_{+} + B_{+}^{\dagger})^{2}}{\Lambda^{2}} + \dots$$

Potential:

$$V = g_{MM^{\dagger}}^{-1} |F_M|^2$$
$$F_M = m_Q \Lambda.$$

$$V \sim m_Q^2 (\text{Tr}MM^{\dagger} + \text{Tr}M\text{Tr}M^{\dagger} + (B_+ + B_+^{\dagger})^2)$$

Contribution stays finite at $N_f = N_c$

Limit $N_f = N_c$: calculabe versus uncalculable

Consider $N_f = N_c + 1$ with one very heavy pair of quarks

- $(m_Q)_{N_c+1}$ the heaviest mass
- $\hat{\Lambda}$ confining scale of $N_f=N_c+1$

 $(m_Q)_{N_c+1} \to \infty$ we approach $N_f = N_c$ limit

- 6 calculable, tree $m^2 \sim \frac{m_Q \hat{\Lambda}}{m_{N_c+1}} \to 0$
- 6 pseudo-moduli $m^2 \sim \frac{1}{16\pi^2} \frac{m_Q \hat{\Lambda}}{m_{N_C+1}} \to 0$
- ${\rm ^6}$ uncalculable $m_{\rm uncalc}^2 \sim m_Q^2$ finite
- ullet we do not even know the sign of m^2

Another deformation - ITIY

Itriligator, Thomas, 1996; Izawa, Yanagida, 1996 Try another deformation

- 6 does the extremum survive?
- 6 is it still a minimum?
- 6 where is calculability lost?

Add singlets. Under $SU(N_f)_L \times SU(N_f)_R$:

- 6 S_{ij} $(\bar{\mathbf{N}}, \mathbf{N})$
- 6 T (1,1), \bar{T} (1,1)

Low-energy Superpotential

$$W = \mathcal{A}(\det M - B\bar{B} - \Lambda^{2N}) \longrightarrow +$$

$$\lambda \text{Tr}(SM) + \kappa (TB + \bar{T}\bar{B})$$

$$m_Q \text{Tr} M$$
 $+$ $\frac{m_S}{2} S^2 + \frac{m_T}{2} (T^2 + \bar{T}^2)$

moduli space deformation

*ISS mass-term

coupling

 $singlet\ masses$ - m_Q has no effect w/o them

ISS $N_f = N_c$ limit

Decoupling limit:

$$\frac{\lambda^2}{m_S} \to 0; \quad \frac{\kappa^2}{m_T} \to 0$$

SUSY-breaking solution should:

- 6 $M \to 0$, $B_+ \to 0$, $B_- \to \Lambda$ at the decoupling limit
- $_{6}$ $F_{M} \propto m_{Q}$

SUSY solution:

- 6 decoupling limit finite distance from the origin
- sufficiently far from SUSY-breaking solution

Non-SUSY solution and decoupling

- look for solution along baryonic branch
- 6 take $(m_Q)_{ij} \propto \delta_{ij}$

Non-SUSY solution near the origin:

$$M \sim \left(\frac{\lambda^2}{m_S} \frac{m_T}{\kappa^2}\right)^{\frac{1}{N-2}}$$

Decoupling:

$$M \to 0 \qquad \Longrightarrow \qquad \frac{\lambda^2/m_S}{\kappa^2/m_T} \to 0$$

 S_{ij} decouples faster than T, \bar{T}

Spectrum at SUSY-breaking point

- ${f 6}$ spectrum for B and T supersymmetric
- 6 ISS: mesino is Goldstino
- expect: Goldstino reduces to mesino in decoupling limit
- ullet before: admixture of M and S
- 6 one SUSY-breaking parameter: ξ

$$\xi \propto \frac{\lambda^2}{m_S} m_Q^*$$

Saddle point

Always one state below zero - instability.

Range of validity

- 6 wanted: calculable contributions ≫ uncalculable
- 6 the lowest state $m^2 \sim \pm |\xi|$
- 6 demand $\frac{(\lambda\Lambda)^2 m_Q}{m_S} \gg m_Q^2$ calculable uncalculable
- one can choose e.g. $m_Q \ll (\lambda \Lambda) \ll m_S \lesssim \Lambda$

$N_f = N_c$ conjecture overview

- ISS points undergo phase transition
- shaded region: ISS point is governed by non-calculable contributions from Kähler

Phenomenological consequences - Pentagon

Banks, 2006, "Pentagon" model

- 6 $N_f=N_c=5$ with diagonal ISS mass $\Delta W=m_Q{
 m Tr}M$
- use ISS-conjectered minimum
- 6 flavor symmetry $SU(5)_{
 m diag}$
- embed the SM into the flavor symmetry
- 6 μ-problem: need the singlet $S: \Delta W = SH_uH_d$
- $^{\rm 6}~SU(3)\times SU(2)\times U(1)$ unbroken S couples to the quarks through Y_{ij}
- ${f 6}$ messengers off diagonal components of M

Spectrum of Pentagon

Metastability $m_Q \ll \Lambda_5$

Consider first $\lambda \ll 1$ to avoid destabilization

ISS minimum? Answer in ΔK

let's believe ISS conjecture

Statement: weakly coupled messengers - STr[mess] > 0

Poppitz and Trivedi, 1997:

large **negative** contributions to squarks m^2

Wrong-sign contributions to squark masses

- 6 small λ tachyonic squarks, $SU(3)_C$ is broken
- 6 $m^2[\text{squark}] \propto \log(\Lambda_5/(m_F))$ $\sim \lambda^{\#} \sqrt{m_Q \Lambda_5}$
- δ large back to ITIY-like, no stable minimum
- 6 minimum may exist in intermediate range not ISS-conjectured minimum!
- λ is large or small Pentagon is ruled out. Intermediate λ we do not know. Unlikely to have viable minimum.

Conclusions

- there is no clear indication that the meta-stable SUSY-breaking vacuum exists in $N_f=N_c$ SQCD
- o no information can be gained by deforming the theory
- minimum of one deformation saddle point in another
- 6 coupled singlets the instability may be generic
- Pentagon the coupling to singlet can not be too large or too small
- of if the conjectured minimum of Pentagon exists:
 - it's uncalculable
 - it's not ISS minimum