A Collider Signature of the Supersymmetric Golden Region

Christian Spethmann

Cornell University

based on Maxim Perelstein, CS JHEP 04 (2007) 070

SUSY 2007, Karlsruhe July 31, 2007

Two Strategies for SUSY Collider Studies

How can we set 105 parameters in MSSM for a collider study?

- Top-down approach (the usual):
 - Pick favorite SUSY breaking scheme (mSUGRA etc) to reduce dimensionality of parameter space
 - Find phenomenologically "interesting" benchmark points
- Bottom-up approach (this talk):
 - Parameterize ignorance by considering weak scale superpotential and soft SUSY breaking terms
 - Apply existing experimental bounds (non-observation of particles, SM precision measurements)
 - Reduce fine tuning as much as possible (after all the original motivation for SUSY!)

Relevant Parameters: Higgs and Top Sector

Strongest constraints from data and naturalness: Higgs sector ⇒ relevant soft SUSY breaking Lagrangian:

$$\mathcal{L} = -m_u^2 |H_u|^2 - m_d^2 |H_d|^2 - \left(bH_u^T H_d + \text{c.c.}\right)$$
$$-m_{Q^3}^2 Q^{3\dagger} Q^3 - m_{u^3}^2 |u^3|^2 - \left(y_t A_t Q^{3\dagger} H_u u^3 + \text{c.c.}\right)$$

where $y_t = y_t^{\text{SM}} / \sin \beta$.

How can we parameterize this parameter space?

- μ-term + six additional free parameters
- Higgs VEV fixes one combination
- Six remaining can be choosen as $\tan \beta$, μ , m_A , \tilde{m}_1 , \tilde{m}_2 , θ_t

Quantifying Naturalness: Higgs Sector

Tree level Z boson mass in the MSSM:

$$m_Z^2 = -m_{H_u}^2 \left(1 - \frac{1}{\cos 2\beta}\right) - m_{H_d}^2 \left(1 + \frac{1}{\cos 2\beta}\right) - 2|\mu|^2$$

Quantify fine-tuning by

$$A(\xi) = \left| \frac{\partial \log m_Z^2}{\partial \log \xi} \right|.$$

Overall tree-level fine tuning Δ : Add $A(\mu)$, A(b), $A(m_u^2)$ and $A(m_d^2)$ in quadrature

Quantifying Naturalness: Top Sector

In these variables the stop loop contributions to $\delta m_{H_u}^2$ are

$$\frac{3}{16\pi^2} \left(y_t^2 \left(\tilde{m}_1^2 + \tilde{m}_2^2 - 2m_t^2 \right) + \frac{(\tilde{m}_2^2 - \tilde{m}_1^2)^2}{4v^2} \sin^2 2\theta_t \right) \log \frac{2\Lambda^2}{\tilde{m}_1^2 + \tilde{m}_2^2}$$

where Λ is the scale at which the divergence is cut off.

$$\Rightarrow \delta_t m_Z^2 pprox -\delta m_{H_u}^2 \left(1 - rac{1}{\cos 2eta}
ight).$$

Renormalization of the angle β is subdominant and neglected. We measure fine-tuning in the stop sector by introducing

$$\Delta_t = \left| \frac{\delta_t m_Z^2}{m_Z^2} \right|.$$

Experimental Constraints - Higgs Mass

To one loop order the Higgs mass is given by

$$m^{2}(h^{0}) = m_{Z}^{2} \cos^{2} 2\beta \left(1 - \frac{3}{8\pi^{2}} \frac{m_{t}^{2}}{v^{2}} \log \frac{M^{2}}{m_{t}^{2}}\right) + \frac{3}{4\pi^{2}} \frac{m_{t}^{4}}{v^{2}} \left[\frac{a^{2}}{M^{2}} \left(1 - \frac{a^{2}}{12M^{2}}\right) + \log \frac{M^{2}}{m_{t}^{2}}\right]$$

where

$$M^2 = \frac{1}{2}(\tilde{m}_1^2 + \tilde{m}_2^2)$$
 $a = \frac{\tilde{m}_2^2 - \tilde{m}_1^2}{2v\sin 2\theta_t}$

⇒ Pushing the Higgs mass over the experimentally excluded limit (114.4 GeV) requires significant stop mass splitting.

Other Experimental Constraints

- Direct Collider Bounds: LEP2 & Tevatron searches for chargino and stop production $\Rightarrow \mu, \tilde{m}_1 \gtrsim 100 \text{ GeV}$
- 2 Loop corrections to the ρ parameter \Rightarrow eliminate part of parameter space with low \tilde{m}_1 and large δm
- **3** $b \rightarrow s\gamma$ decay rate:
 - Large contributions from $\tilde{t} \tilde{H}$ loop
 - Can be cancelled by top-charged Higgs loop
 - Consistent value of m_A can be found for any μ
- 4 $g_{\mu}-2$: Most sensitive to slepton and weak gaugino masses, no critical dependence on stop and Higgs sectors

Plot of the Golden Region for $\theta_t = \pi/4$ and $\theta_t = 0$

- In this plots $\tan \beta = 10$ and $\Lambda_t = 100$ TeV
- Shape of the Golden Region is approximately independent of $\tan \beta$ for values between 3 and 35

Signature of the Golden Region

How can this hypothesis be tested?

- \tilde{t}_1 and \tilde{t}_2 have masses below 1 TeV \Rightarrow stop sector is directly accessible at the LHC
- ② Substantial mass splitting between the two stops \Rightarrow decay mode $\tilde{t}_2 \rightarrow \tilde{t}_1 Z$ is kinematically allowed
- § Stop mixing angle is large $\Rightarrow \tilde{t}_2\tilde{t}_1Z$ -vertex is non-zero, the decay occurs with substantial BR
- Independently of the spectrum, all stop decays will eventually produce a b-jet

Inclusive Signature at the LHC

$$Z(\ell^+,\ell^-) + 2j_b + \not\!\!E_T + X$$

Golden Region Benchmark Point

Weak scale MSSM input parameters:

m_{Q^3}	m _{u³}	m_{d^3}	A_t	μ	m_A	$\tan \beta$	<i>M</i> _{1,2,3}	$m_{ ilde{q}, ilde{\ell}}$
548.7	547.3	1000	1019	250	200	10	1000	1000

Mass spectrum of superpartners and Higgs sector:

(stop mixing
$$\theta_t = \pi/4$$
; at the LHC $\sigma(pp \to \tilde{t}_2 \tilde{t}_2^*) \approx 50$ fb)

• \tilde{t}_2 decay branching ratios (in %):

$\tilde{t}_1 Z$	$\chi_1^0 t$	$\chi_2^0 t$	$\chi_1^+ b$	$\tilde{b}W^+$	$\tilde{t}_1 A$	$\tilde{t}_1 h^0$	$\tilde{t}_1 H^0$
31	19	13	18	15	3	3×10^{-3}	3×10^{-4}

Tools, Backgrounds and Cuts

Simulation and analysis chain:

Madgraph $4.0 \Rightarrow Pythia 6.4 \Rightarrow PGS 3.9 \Rightarrow ROOT$ (advantage: identical treatment of signal and all BGs)

Use rectangular cuts to isolate signal from irreducible SM backgrounds (jjZZ, $t\bar{t}$, $t\bar{t}Z$):

- Two OSSF leptons with $\sqrt{s(\ell^+\ell^-)} = M_Z \pm 2$ GeV
- $p_t > 125$ GeV for the hardest jet, 50 GeV for the second jet
- one of the two hardest jet must be b-tagged
- minimal Z boost factor: $\gamma(Z) > 2.0$
- missing E_T cut: ∉_T > 225 GeV

Can probably be improved by using neural networks, decision trees, . . .

Event Numbers and Oberservability

	$\tilde{t}_2\tilde{t}_2^*$	jjZZ	tīZ	tīt
$\sigma_{ m prod}(m pb)$	0.051	0.888	0.616	552
total simulated	9964	159672	119395	3745930
1. leptonic Z(s)	1.4	4.5	2.6	0.04
2(a). $p_t(j_1) > 125 \text{ GeV}$	89	67	55	21
2(b). $p_t(j_2) > 50 \text{ GeV}$	94	93	92	76
3. <i>b</i> -tag	64	8	44	57
4. $\gamma(Z) > 2.0$	89	66	69	26
5. <i>Ę</i> _T > 225 GeV	48	2.2	4.4	1.7
$N_{\rm exp}(100~{\rm fb}^{-1})$	16.4	2.8	10.8	8.8

We also simulated 1.4 \times 10⁶ jjZ events. All that survive cuts 1-4 have $\not\!\!E_T <$ 50 GeV.

Missing Energy Distribution

Other backgrounds:

- jjZ: large σ with high ∉_T tail, exponential fit ⇒ negligible?
- tt̄j: comparable to tt̄, shoulder subtraction
- ZZZ, ZZW, ZWW, tZj, tZj: event rates × BR: ⇒ not a problem

SUSY Background: Confusion with $\chi^{0/\pm}$ Decay

Possible strategies to distinguish decay chains:

- B-tags: Zs from \tilde{t}_2 decays are always accompanied by a b-jet (but 3rd generation squarks could just have low mass)
- Spin correlation: event rate for chargino (not neutralino) decays have linear dependence on $s_{bZ} = (p_b + p_Z)^2$
- Related decays: $\tilde{t}_2 \to \tilde{b}_L W^+$ and $\tilde{b}_L \to \tilde{t}_1 W^-$ would be easier to interpret (but harder to observe)

Summary

- Naturalness and data point to a Golden Region in the MSSM parameter space
- We expect stops with large mixing angle, split by 300-400 GeV
- **③** The decay mode $\tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ has a substantial branching ratio
- The detector signature of this decay is $Z(\ell^+\ell^-) + 2j_b + E_T + X$
- $\ensuremath{\bullet}$ Evidence can be observed with $\sim 100~\ensuremath{fb^{-1}}$ at the LHC

