Tau polarization in SUSY cascade decays at LHC

Kentarou Mawatari

(馬渡 健太郎)

KOREA INSTITUTE FOR ADVANCED STUDY

- □ hep-ph/0612237 (PLB648(2007)207) for LHC
 "Tau polarization in SUSY cascade decay"
 with S.Y.Choi (Chonbuk U.), K.Hagiwara (KEK),
 Y.G.Kim (Sejong U.), P.M.Zerwas (DESY/Aachen)
- "Spin analysis of supersymmetric particles"

with S.Y.Choi (Chonbuk U.), K.Hagiwara (KEK). H-U.Martyn, P.M.Zerwas (DESY/Aachen) on Jul/30(Mon)

on Jul/30(Mon) by P.M.Zerwas

Contents

- 1. Introduction
 - SUSY cascades
 - Tau polarization
- 2. Invariant mass distributions
 - Tau-tau vs pi-pi invariant mass distribution
- 3. Numerical studies
 - SUSY vs UED'
 - Experimental effects
 - Determination of the stau mixing
- 4. Summary

1. Introduction: SUSY cascades

- Provide a rich source of information on SUSY particles and the structure of the underlying theory.
- ☐ The SPS1a cascade

$$\tilde{q} \rightarrow q \tilde{\chi}_2^0 \rightarrow q \ell \tilde{\ell} \rightarrow q \ell \ell \tilde{\chi}_1^0$$
30% for e,μ 100% for t
(escape detection)

- ☐ So far, the cascade have primarily been studied involving 1st and 2nd generation leptons/sleptons.
 - We focus on the 3rd generation.

1. Introduction: Tau polarization

- How the tau polarization can be exploited to study chirality and mixing effects in both the neutralino and stau sectors.
 - As polarization analyzer, we use single pion decays of the tau's.

ne tau s.
$$z = \frac{E \pi / E \tau}{(\tau_R)^\pm} \rightarrow \begin{array}{c} (-) \\ \nu_\tau \end{array} \pi^\pm \ : \quad F_R = 2z \qquad \text{(hard fragment)}$$

$$(\tau_L)^\pm \rightarrow \begin{array}{c} (-) \\ \nu_\tau \end{array} \pi^\pm \ : \quad F_L = 2(1-z) \quad \text{(soft fragment)}$$

- For notational convenience we characterize the tau states by chirality (not helicity).
- The techniques can readily be applied to other decay modes, e.g., ρ and a_1 .

2. Invariant mass distributions

□ tau-tau vs pi-pi invariant mass distribution

The distribution of the visible final state particles in the squark cascade

$$\frac{1}{\Gamma_{\tilde{q}\alpha}} \frac{d\Gamma_{\alpha\beta\gamma}^{pa;jk}}{d\cos\theta_{\tau_n} d\cos\theta_{\tau_f} d\phi_{\tau_f}} = \frac{1}{8\pi} B(\tilde{q}_\alpha \to q_\alpha \tilde{\chi}_j^0) B(\tilde{\chi}_j^0 \to \tau_\beta \tilde{\tau}_k) B(\tilde{\tau}_k \to \tau_\gamma \tilde{\chi}_1^0) [1 + (pa)(\alpha\beta)\cos\theta_{\tau_n}]$$

$$p = \pm : \quad \text{particle/anti-particle} \qquad \alpha = \pm : \quad \tilde{q} \text{ and } q R/L \text{ chirality}$$

$$a = \pm : \quad \tau \text{ and } \pi \text{ charge} \qquad \beta = \pm : \quad \text{near } \tau_n R/L \text{ chirality}$$

$$j = 2, 3, 4 : \quad \text{neutralino mass index} \qquad \gamma = \pm : \quad \text{far } \tau_f R/L \text{ chirality}$$

$$k = 1, 2 : \quad \tilde{\tau} \text{ mass index}$$
(a)
$$\tau_{\alpha}^{a} / \tau_{\beta}^{a} \qquad \tau_{\gamma}^{a} / \tau_{\gamma}^{a} \qquad \tau_{\gamma}^{a} / \tau_{\gamma}^{a$$

- The distribution depends only on the near tau angle.
 - The scalar character of the intermediate stau erases all angular correlations.

Invariant mass distribution

☐ The angles in the cascade are related to the invariant mass.

$$\begin{split} m_{\tau\tau}^2 &= \frac{1}{2} \left(1 - \cos \theta_{\tau_f} \right) & max \, M_{\tau\tau}^2 &= m_{\tilde{\chi}_j^0}^2 (1 - m_{\tilde{\tau}_k}^2 / m_{\tilde{\chi}_j^0}^2) (1 - m_{\tilde{\chi}_1^0}^2 / m_{\tilde{\tau}_k}^2) \\ m_{q\tau_n}^2 &= \frac{1}{2} \left(1 - \cos \theta_{\tau_n} \right) & max \, M_{q\tau_n}^2 &= m_{\tilde{q}\alpha}^2 (1 - m_{\tilde{\chi}_j^0}^2 / m_{\tilde{q}\alpha}^2) (1 - m_{\tilde{\tau}_k}^2 / m_{\tilde{\chi}_j^0}^2) \\ m_{q\tau_f}^2 &= \frac{1}{4} (1 + c_n) (1 - c_f) - \frac{r_{jk}}{2} s_n s_f \cos \phi_{\tau_f} & max \, M_{q\tau_f}^2 &= m_{\tilde{q}\alpha}^2 (1 - m_{\tilde{\chi}_j^0}^2 / m_{\tilde{q}\alpha}^2) (1 - m_{\tilde{\chi}_1^0}^2 / m_{\tilde{\tau}_k}^2) \\ &+ \frac{r_{jk}^2}{4} (1 - c_n) (1 + c_f) & \\ q & & & \\ & & &$$

 Here, we define the invariant masses in units of their maximum values.

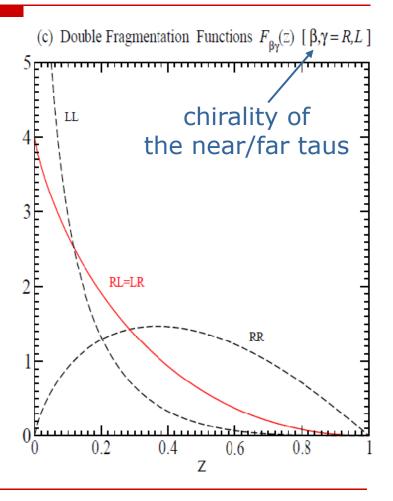
Pion invariant mass distribution

Pion distributions

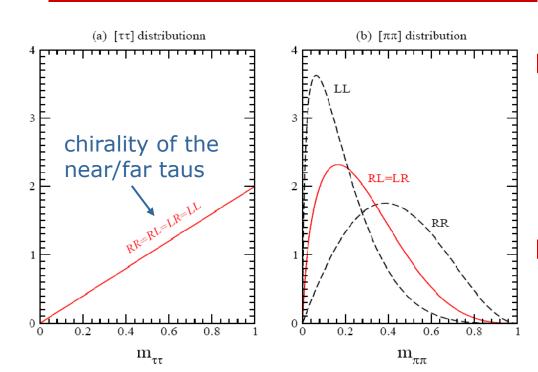
$$\frac{d\Gamma}{dm_{q\pi}^2} = \int_{m_{q\pi}^2}^1 \frac{dm_{q\tau}^2}{m_{q\tau}^2} \frac{d\Gamma_{\beta}}{dm_{q\tau}^2} F_{\beta} \left(\frac{m_{q\pi}^2}{m_{q\tau}^2}\right)$$

$$\frac{d\Gamma}{dm_{\pi\pi}^2} = \int_{m_{\pi\pi}^2}^1 \frac{dm_{\tau\tau}^2}{m_{\tau\tau}^2} \frac{d\Gamma_{\beta\gamma}}{dm_{\tau\tau}^2} F_{\beta\gamma} \left(\frac{m_{\pi\pi}^2}{m_{\tau\tau}^2}\right)$$

 \square $\mathsf{T}_{\mathsf{L/R}} \rightarrow \mathsf{\Pi}$ fragmentation func.


$$F_{\beta}(z) = 1 + \beta (2z - 1) \qquad z = m_{q\pi}^2 / m_{q\tau}^2$$

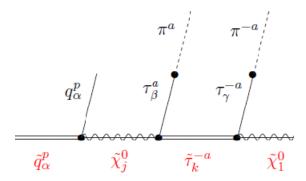
$$F_{RR}(z) = 4z \log \frac{1}{z} \qquad z = m_{\pi\pi}^2 / m_{\tau\tau}^2$$


$$F_{RL}(z) = F_{LR}(z) = 4 \left[1 - z - z \log \frac{1}{z} \right]$$

$$F_{LL}(z) = 4 \left[(1+z) \log \frac{1}{z} + 2z - 2 \right]$$

The distributions do not require the experimental reconstruction of tau energy.

The tau-tau vs pi-pi invariant mass in the X₂ decays

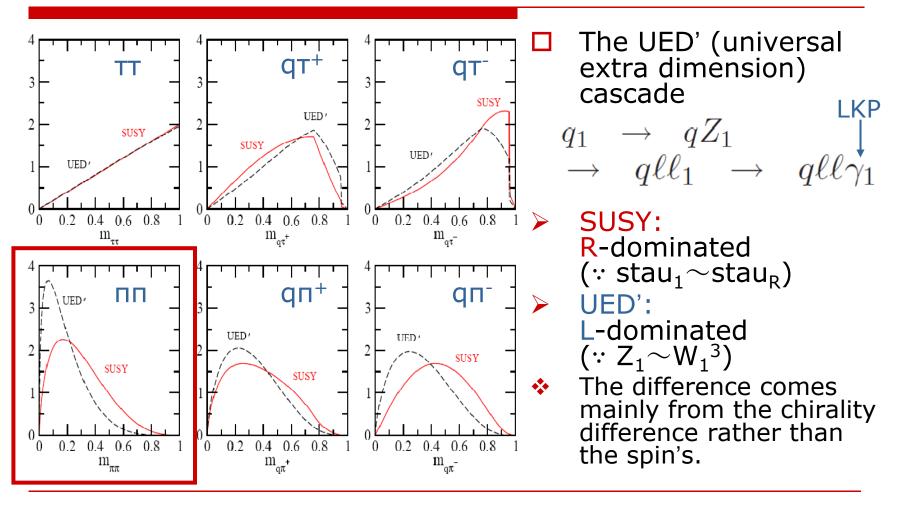


The expectation value of the invariant mass

$$\langle m_{\pi\pi} \rangle = \begin{cases} 288/675 & \text{for } RR \\ 192/675 & \text{for } RL/LR \\ 128/675 & \text{for } LL \end{cases}$$

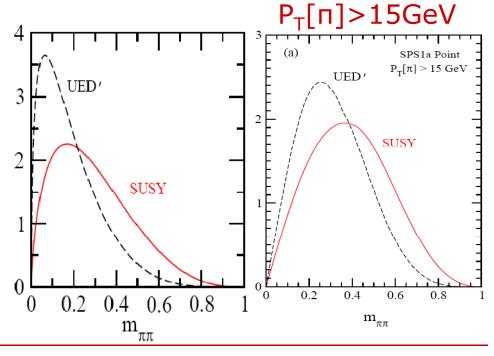
The distributions do not depend on the X₂ polarization.
(∵ stau intermediate)

The tau polarization measurements has a great potential for determining the SUSY characters.

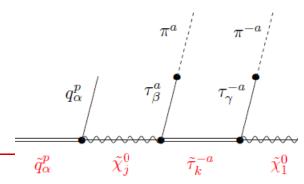


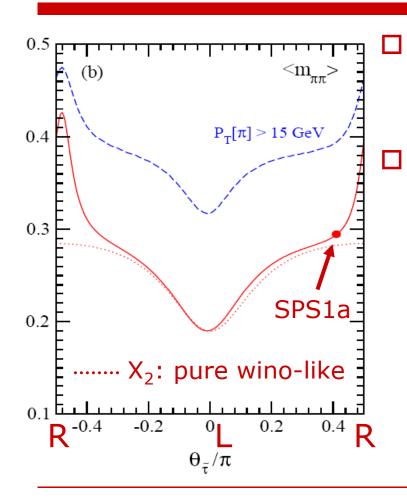
3. Numerical studies

- ☐ SUSY vs UED'
- Experimental effects
- Determination of the stau mixing
 - ♦ SPS1a point: m_0 =100 GeV, $m_{1/2}$ =250 GeV, A_0 =-100 GeV, tanβ=10, μ>0 m(squark)=570 GeV, m(neutralino2)=175 GeV, m(stau1)=135 GeV, m(neutralino1)=100 GeV, neutralino2~wino, stau1~stauR


SUSY vs UED'

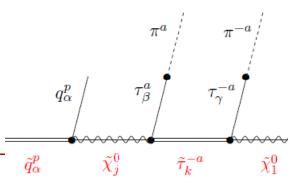
(mass spectrum: SUSY SPS1a)




Transverse momentum cut for experimental analyses

- \square Experimental reconstruction of hadronic tau decays requires a cut of the low P_T region.
- Transverse momentum cut
 - increase the efficiencies
 - reduce the primary event number, and L/R sensitivity
- The SUSY R-dominated distribution is mildly affected.
- The UED' L-dominated distribution is shifted strongly.

Determination of the stau mixing


The stau mixing

$$\tilde{\tau}_1 = \cos \theta_{\tilde{\tau}} \, \tilde{\tau}_L + \sin \theta_{\tilde{\tau}} \, \tilde{\tau}_R$$

$$\tilde{\tau}_2 = -\sin\theta_{\tilde{\tau}}\,\tilde{\tau}_L + \cos\theta_{\tilde{\tau}}\,\tilde{\tau}_R$$

The large sensitivity near $|\theta|=\pi/2$ can be traced back to the fact that X_2 is <u>nearly</u> wino-like.

- For $|\theta|=\pi/2$, stau₁=stau_R couples to X₂ only through its small higgsino and U(1) gaugino components.
- For $|\theta| < \pi/2$, the near tau coupling is L-dominated.

4. Summary

☐ The SUSY cascade decay

$$\tilde{q} \rightarrow q\tilde{\chi}_2^0 \rightarrow q\ell\tilde{\ell} \rightarrow q\ell\ell\tilde{\chi}_1^0$$

for the tau/stau case.

- The analysis of tau polarization in cascade decays, especially the m_{nn} distribution, provides valuable information on chirality-type and mixing of SUSY particles.
 - The large size of the polarization effects was predicted and exemplified quantitatively by the pion channel on the theoretical basis.
 - The effects can be exploited experimentally in practice.

Tau-stau-neutralino coupling

$$\langle \tilde{\chi}_j^0 | \tilde{\tau}_k | \tau_\beta \rangle = ig A_{\beta kj}^{\tau}$$

$$A_{Lkj}^{\tau} = -h_{\tau} N_{j3}^{*} U_{\tilde{\tau}_{k2}} + \frac{1}{\sqrt{2}} (N_{j2}^{*} + N_{j1}^{*} t_{W}) U_{\tilde{\tau}_{k1}}$$
$$A_{Rkj}^{\tau} = -h_{\tau} N_{j3} U_{\tilde{\tau}_{k1}} - \sqrt{2} N_{j1} t_{W} U_{\tilde{\tau}_{k2}}$$

$$h_{\tau} = m_{\tau} / \sqrt{2} m_W \cos \beta$$