The dark matter as a light gravitino¹,²

G. Moultaka

Laboratoire de Physique Théorique & Astroparticules CNRS & University of Montepllier II

SUSY07, Karlsruhe, July 30, '07

work in progress, M. Kuroda (Meiji-Gakuin), M. Lemoine (Paris), M. Capdequi-Peyranère (Montpellier)

¹ based on PRD73:043514,2006 , PLB645:222-227,2007, JCAP0607:010,2006

K. Jedamzik (LPTA-Montpellier), M. Lemoine (IAP-Paris)

Outline

Introductory motivations

Gauge Mediated Susy Breaking
GUT Groups
Coupling to Supergravity

Gravitino Problem – Messenger Solution

Gravitino relic density

Concluding remarks

If Supersymmetry breaking and mediation to the MSSM happen to be of the gauge type (GSMB-like)...

- by far less studied in the litterature than the dark matter candidates (Neutralino/Gravitino) in the gravity-mediated scenarios!
- ► ★ recently a renewed interest in dynamical SUSY breaking opening up many new possibilities for GMSB scenarios [→ Intriligator, Seiberg & Shi, JHEP
- ▶ typically, GMSB ⇒ new relatively light matter and gauge sectors, and a very light gravitino
- \rightarrow will play a role in the early Universe, for sufficiently high T_{RH}
- → signatures at the colliders
 - \rightarrow In this talk, Gravitino Dark Matter with mass $m_{3/2} \sim O(1) keV \rightarrow O(1) GeV$ and an essentially free $T_{RH} > M_{messengers}$

If Supersymmetry breaking and mediation to the MSSM happen to be of the gauge type (GSMB-like)...

- by far less studied in the litterature than the dark matter candidates (Neutralino/Gravitino) in the gravity-mediated scenarios!
- ➤ recently a renewed interest in dynamical SUSY breaking opening up many new possibilities for GMSB scenarios [→ Intriligator, Seiberg & Shi, JHEP 0604, 021 (2006), see also Murayama's talk in // session! ★
- ▶ typically, GMSB ⇒ new relatively light matter and gauge sectors, and a very light gravitino
- \rightarrow will play a role in the early Universe, for sufficiently high T_{RH}
- signatures at the colliders
 - \rightarrow In this talk, Gravitino Dark Matter with mass $m_{3/2} \sim O(1) keV \rightarrow O(1) GeV$ and an essentially free $T_{RH} > M_{messengers}$

If Supersymmetry breaking and mediation to the MSSM happen to be of the gauge type (GSMB-like)...

- by far less studied in the litterature than the dark matter candidates (Neutralino/Gravitino) in the gravity-mediated scenarios!
- ➤ recently a renewed interest in dynamical SUSY breaking opening up many new possibilities for GMSB scenarios [→ Intriligator, Seiberg & Shi, JHEP 0604, 021 (2006), see also Murayama's talk in // session! ★
- ▶ typically, GMSB ⇒ new relatively light matter and gauge sectors, and a very light gravitino
- \rightarrow will play a role in the early Universe, for sufficiently high T_{RH}
- signatures at the colliders
 - \rightarrow In this talk, Gravitino Dark Matter with mass $m_{3/2} \sim O(1) keV \rightarrow O(1) GeV$ and an essentially free $T_{RH} > M_{messengers}$

If Supersymmetry breaking and mediation to the MSSM happen to be of the gauge type (GSMB-like)...

- by far less studied in the litterature than the dark matter candidates (Neutralino/Gravitino) in the gravity-mediated scenarios!
- ➤ recently a renewed interest in dynamical SUSY breaking opening up many new possibilities for GMSB scenarios [→ Intriligator, Seiberg & Shi, JHEP 0604, 021 (2006), see also Murayama's talk in // session! ★
- ▶ typically, GMSB ⇒ new relatively light matter and gauge sectors, and a very light gravitino
- ightarrow will play a role in the early Universe, for sufficiently high T_{RH}
- signatures at the colliders
 - ightarrow In this talk, Gravitino Dark Matter with mass $m_{3/2} \sim O(1) keV \rightarrow O(1) GeV$ and an essentially free $T_{RH} > M_{messengers}$

If Supersymmetry breaking and mediation to the MSSM happen to be of the gauge type (GSMB-like)...

- by far less studied in the litterature than the dark matter candidates (Neutralino/Gravitino) in the gravity-mediated scenarios!
- ★ recently a renewed interest in dynamical SUSY breaking opening up many new possibilities for GMSB scenarios [→ Intriligator, Seiberg & Shi, JHEP 0604, 021 (2006), see also Murayama's talk in // session] ★
- ▶ typically, GMSB ⇒ new relatively light matter and gauge sectors, and a very light gravitino
- ightarrow will play a role in the early Universe, for sufficiently high T_{RH}
- → signatures at the colliders
 - ightarrow In this talk, Gravitino Dark Matter with mass $m_{3/2} \sim O(1) keV \rightarrow O(1) GeV$ and an essentially free $T_{RH} > M_{messengers}$

If Supersymmetry breaking and mediation to the MSSM happen to be of the gauge type (GSMB-like)...

- by far less studied in the litterature than the dark matter candidates (Neutralino/Gravitino) in the gravity-mediated scenarios!
- ★ recently a renewed interest in dynamical SUSY breaking opening up many new possibilities for GMSB scenarios [→ Intriligator, Seiberg & Shi, JHEP 0604, 021 (2006), see also Murayama's talk in // session] ★
- ▶ typically, GMSB ⇒ new relatively light matter and gauge sectors, and a very light gravitino
- \rightarrow will play a role in the early Universe, for sufficiently high T_{RH}
- → signatures at the colliders
 - ightarrow In this talk, Gravitino Dark Matter with mass $m_{3/2} \sim O(1) keV \rightarrow O(1) GeV$ and an essentially free $T_{RH} > M_{messengers}$

If Supersymmetry breaking and mediation to the MSSM happen to be of the gauge type (GSMB-like)...

- by far less studied in the litterature than the dark matter candidates (Neutralino/Gravitino) in the gravity-mediated scenarios!
- ★ recently a renewed interest in dynamical SUSY breaking opening up many new possibilities for GMSB scenarios [→ Intriligator, Seiberg & Shi, JHEP 0604, 021 (2006), see also Murayama's talk in // session] ★
- ▶ typically, GMSB ⇒ new relatively light matter and gauge sectors, and a very light gravitino
- \rightarrow will play a role in the early Universe, for sufficiently high T_{RH}
- → signatures at the colliders
 - \rightarrow In this talk, Gravitino Dark Matter with mass $m_{3/2} \sim O(1) keV \rightarrow O(1) GeV$ and an essentially free $T_{RH} > M_{messengers}$

If Supersymmetry breaking and mediation to the MSSM happen to be of the gauge type (GSMB-like)...

- by far less studied in the litterature than the dark matter candidates (Neutralino/Gravitino) in the gravity-mediated scenarios!
- ★ recently a renewed interest in dynamical SUSY breaking opening up many new possibilities for GMSB scenarios [→ Intriligator, Seiberg & Shi, JHEP 0604, 021 (2006), see also Murayama's talk in // session] ★
- ▶ typically, GMSB ⇒ new relatively light matter and gauge sectors, and a very light gravitino
- \rightarrow will play a role in the early Universe, for sufficiently high T_{RH}
- → signatures at the colliders
 - ightarrow In this talk, Gravitino Dark Matter with mass $m_{3/2} \sim O(1) keV \rightarrow O(1) GeV$ and an essentially free $T_{RH} > M_{messengers}$

Gauge Mediated Susy Breaking

S: "spurion" field, singlet under all gauge groups $\Phi_M, \overline{\Phi}_M$: quark-like or lepton-like charged messengers unde

$$SU(3)_c \times SU(2)_L \times U(1)_Y$$

 $\Phi \supset (3, 1, -\frac{1}{3}) \text{ and } (1, 2, \frac{1}{2})$
 $\overline{\Phi}_M \supset (\overline{3}, 1, \frac{1}{3}) \text{ and } (1, 2, -\frac{1}{2})$

e.g. $\mathbf{5} + \overline{\mathbf{5}}$ or $\mathbf{10} + \overline{\mathbf{10}}$ of $SU(5)_{GUT}$, ϕ_i messengers: charged under G_M

Gauge Mediated Susy Breaking

S: "spurion" field, singlet under all gauge groups $\Phi_M, \overline{\Phi}_M$: quark-like or lepton-like charged messengers unde

$$SU(3)_c imes SU(2)_L imes U(1)_Y \ \Phi \supset (3,1,-rac{1}{3}) ext{ and } (1,2,rac{1}{2}) \ \overline{\Phi}_M \supset (ar{3},1,rac{1}{3}) ext{ and } (1,2,-rac{1}{2})$$

e.g. $\mathbf{5} + \overline{\mathbf{5}}$ or $\mathbf{10} + \overline{\mathbf{10}}$ of $SU(5)_{GUT}$, ϕ_i messengers: charged under G_M

Gauge Mediated Susy Breaking

S: "spurion" field, singlet under all gauge groups $\Phi_M, \overline{\Phi}_M$: quark-like or lepton-like charged messengers under $SU(3)_c \times SU(2)_L \times U(1)_Y$ $\Phi \supset (3,1,-\frac{1}{3})$ and $(1,2,\frac{1}{2})$

$$\overline{\Phi}_{M}\supset(\bar{\bf 3},{\bf 1},\frac{1}{3})$$
 and $({\bf 1},{\bf 2},-\frac{1}{2})$

e.g. $\mathbf{5} + \overline{\mathbf{5}}$ or $\mathbf{10} + \overline{\mathbf{10}}$ of $SU(5)_{GUT}$, ϕ_i messengers: charged under G_M

$$\Rightarrow \psi_{\mathcal{S}} = \frac{\langle F_{\mathcal{S}} \rangle}{\langle F_{\mathcal{S}}} \tilde{\mathbf{G}} + \dots$$

$$\Rightarrow m_{3/2} = rac{< F_{TOT}>}{\sqrt{3} m_{Pl}} ext{ with } < F_{TOT}> \ \gtrsim \ < F_{S}>$$

$$\Rightarrow m_{1/2} \sim \left(\frac{\alpha}{4\pi}\right) \frac{< F_{\rm S}>}{M_{\rm X}}, \qquad m_0^2 \sim \left(\frac{\alpha}{4\pi}\right)^2 \left(\frac{< F_{\rm S}>}{M_{\rm X}}\right)^2$$

Moreover, one expects
$$G_F^{-1/2} \sim \frac{\langle F_{TOT} \rangle}{M_X} \sim m_{3/2} \left(\frac{m_{Pl}}{M_X}\right)$$
 \Rightarrow very light gravitino [compare mSUGRA $G_F^{-1/2} \sim \frac{\langle F_{TOT} \rangle}{M_X} \sim m_{3/2}$]

SUSY Breaking
$$\Rightarrow$$
 $<$ F_S $> \neq 0$, also $<$ S $> \neq 0$

$$\downarrow \qquad \qquad \downarrow \qquad$$

$$\Rightarrow m_{1/2} \sim \left(\frac{\alpha}{4\pi}\right) \frac{\langle F_{\rm S} \rangle}{M_{\rm X}}, \qquad m_0^2 \sim \left(\frac{\alpha}{4\pi}\right)^2 \left(\frac{\langle F_{\rm S} \rangle}{M_{\rm X}}\right)^2$$

Moreover, one expects
$$G_F^{-1/2} \sim \frac{\langle F_{TOT} \rangle}{M_X} \sim m_{3/2} \left(\frac{m_{Pl}}{M_X} \right)$$
 \Rightarrow very light gravitino [compare mSUGRA $G_F^{-1/2} \sim \frac{\langle F_{TOT} \rangle}{m_{Pl}} \sim m_{3/2}$]

SUSY Breaking
$$\Rightarrow$$
 $<$ F_S $> \neq 0$, also $<$ S $> \neq 0$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow$$

$$\Rightarrow m_{1/2} \sim \left(\frac{\alpha}{4\pi}\right) \frac{\langle F_{S} \rangle}{M_{X}}, \qquad m_{0}^{2} \sim \left(\frac{\alpha}{4\pi}\right)^{2} \left(\frac{\langle F_{S} \rangle}{M_{X}}\right)^{2}$$

Moreover, one expects
$$G_F^{-1/2} \sim \frac{\langle F_{TOT} \rangle}{M_X} \sim m_{3/2} \left(\frac{m_{Pl}}{M_X} \right)$$
 \Rightarrow very light gravitino [compare mSUGRA $G_F^{-1/2} \sim \frac{\langle F_{TOT} \rangle}{m_{Pl}} \sim m_{3/2}$]

GUT groups: SU(5), SO(10)

The lightest messenger scalar is:

- if $\mathbf{5} + \bar{\mathbf{5}}$, $\tilde{\nu}_L$ -like or $\tilde{\mathbf{e}}_L$ -like
- ▶ if $10 + \overline{10}$, electrically charged $SU(2)_L$ singlet
- ightharpoonup if $16 + \overline{16}$, an MSSM singlet

[S. Dimopoulos, G. F. Giudice, A. Pomarol, PLB 389 (1996) 37; T. Hahn, R. Hempfling, hep-ph/9708264]

$$\begin{split} V_{B} &= \mathrm{e}^{K/m_{\mathrm{Pl}}^{2}} \Bigg[K^{i\,j^{*}} \bigg(W \frac{K_{i}}{m_{\mathrm{Pl}}^{2}} + W_{i} \bigg) \bigg(W^{*} \, \frac{K_{j^{*}}}{m_{\mathrm{Pl}}^{2}} + W_{j^{*}}^{*} \bigg) - \frac{3WW^{*}}{m_{\mathrm{Pl}}^{2}} \Bigg] \\ W &\to W + < W >, \quad < W > = \frac{1}{\sqrt{3}} < F_{TOT} > \times m_{\mathrm{Pl}} \simeq m_{3/2} m_{\mathrm{Pl}}^{2} \\ & \Downarrow \\ \mathcal{R}\text{-Symmetry} & \text{Cosmological Cte} \simeq 0 \end{split}$$

$$\Rightarrow$$
 $K \supset f(\phi) \rightarrow W \supset \frac{< W >}{m_{\rm Pl}} f(\phi) = m_{3/2} f(\phi)$
Kähler, super-Weyl trans. $K \rightarrow K + f(\phi) + f^*(\phi^*)$, $W \rightarrow e^{-f(\phi)} W$

e.g.
$$K_{\text{ren}} \supset \mathbf{5}_M \mathbf{\bar{5}}_F \to W \supset m_{3/2} \mathbf{\bar{5}}_M \mathbf{\bar{5}}_F$$

e.g. $K_{\text{non-ren}} \supset \frac{1}{m_{Pl}} \{ \mathbf{\bar{5}}_M \mathbf{\bar{5}}_{F,H} \mathbf{10}_F , \mathbf{5}_M \mathbf{10}_F \mathbf{10}_F \dots \}$

$$V_B = e^{K/m_{\text{Pl}}^2} \Bigg[K^{ij^*} \bigg(W \frac{K_i}{m_{\text{Pl}}^2} + W_i \bigg) \bigg(W^* \frac{K_{j^*}}{m_{\text{Pl}}^2} + W_{j^*}^* \bigg) - \frac{3WW^*}{m_{\text{Pl}}^2} \Bigg]$$

$$W \rightarrow W + \langle W \rangle$$
, $\langle W \rangle = \frac{1}{\sqrt{3}} \langle F_{TOT} \rangle \times m_{\text{Pl}} \simeq m_{3/2} m_{\text{Pl}}^2$
 $\downarrow \qquad \qquad \downarrow \qquad$

$$\begin{array}{ll} \Rightarrow \mathcal{K} \supset f(\phi) & \rightarrow & \mathcal{W} \supset \frac{<\mathcal{W}>}{m_{\mathrm{Pl}}} f(\phi) = \textcolor{red}{m_{3/2}} f(\phi) \\ \text{K\"{a}hler, super-Weyl trans. } \mathcal{K} \rightarrow \mathcal{K} + f(\phi) + f^*(\phi^*), \ \mathcal{W} \rightarrow \mathrm{e}^{-f(\phi)} \mathcal{W} \end{array}$$

e.g.
$$K_{\text{ren}} \supset \mathbf{5}_M \mathbf{\bar{5}}_F \to W \supset m_{3/2} \mathbf{5}_M \mathbf{\bar{5}}_F$$

e.g. $K_{\text{non-ren}} \supset \frac{1}{m_{\text{el}}} \{ \mathbf{\bar{5}}_M \mathbf{\bar{5}}_{F,H} \mathbf{10}_F, \mathbf{5}_M \mathbf{10}_F \mathbf{10}_F \dots \}$

$$\begin{split} V_{B} &= \mathrm{e}^{K/m_{\mathrm{Pl}}^{2}} \Bigg[K^{i\,j^{*}} \bigg(W \frac{K_{i}}{m_{\mathrm{Pl}}^{2}} + W_{i} \bigg) \bigg(W^{*} \, \frac{K_{j^{*}}}{m_{\mathrm{Pl}}^{2}} + W_{j^{*}}^{*} \bigg) - \frac{3\,WW^{*}}{m_{\mathrm{Pl}}^{2}} \Bigg] \\ W \rightarrow W + < W >, \quad < W > = \frac{1}{\sqrt{3}} < F_{TOT} > \times m_{\mathrm{Pl}} \simeq m_{3/2} m_{\mathrm{Pl}}^{2} \\ & \qquad \qquad \downarrow \\ \mathcal{R}\text{-Symmetry} & \text{Cosmological Cte} \simeq 0 \end{split}$$

$$\begin{array}{ll} \Rightarrow K \supset f(\phi) & \rightarrow & W \supset \frac{\leq W \geq}{m_{\rm Pl}} f(\phi) = \frac{\textit{m}_{3/2} f(\phi)}{\textit{k}} \\ \text{K\"{a}hler, super-Weyl trans. } K \rightarrow K + f(\phi) + f^*(\phi^*), \ W \rightarrow e^{-f(\phi)} W \end{array}$$

e.g.
$$K_{\text{ren}} \supset \mathbf{5}_{M} \bar{\mathbf{5}}_{F} \to W \supset m_{3/2} \mathbf{5}_{M} \bar{\mathbf{5}}_{F}$$

e.g. $K_{\text{non-ren}} \supset \frac{1}{m_{Pl}} \{ \bar{\mathbf{5}}_{M} \bar{\mathbf{5}}_{F,H} \mathbf{10}_{F}, \mathbf{5}_{M} \mathbf{10}_{F} \mathbf{10}_{F} \dots \}$

$$\begin{split} V_B &= \mathrm{e}^{K/m_{\mathrm{Pl}}^2} \Bigg[K^{i\,j^*} \bigg(W \frac{K_i}{m_{\mathrm{Pl}}^2} + W_i \bigg) \bigg(W^* \, \frac{K_{j^*}}{m_{\mathrm{Pl}}^2} + W_{j^*}^* \bigg) - \frac{3 \, W W^*}{m_{\mathrm{Pl}}^2} \Bigg] \\ W &\to W + < W >, \quad < W > = \frac{1}{\sqrt{3}} < F_{TOT} > \times m_{\mathrm{Pl}} \simeq m_{3/2} m_{\mathrm{Pl}}^2 \\ & \qquad \qquad \Downarrow \\ \mathcal{R}\text{-Symmetry} & \text{Cosmological Cte} \simeq 0 \end{split}$$

$$\Rightarrow$$
 $K \supset f(\phi) \rightarrow W \supset \frac{< W >}{m_{\rm Pl}} f(\phi) = m_{3/2} f(\phi)$
Kähler, super-Weyl trans. $K \rightarrow K + f(\phi) + f^*(\phi^*)$, $W \rightarrow {\rm e}^{-f(\phi)} W$

e.g.
$$K_{\text{ren}} \supset \mathbf{5}_M \bar{\mathbf{5}}_F \to W \supset m_{3/2} \mathbf{5}_M \bar{\mathbf{5}}_F$$

e.g. $K_{\text{non-ren}} \supset \frac{1}{m_{\text{Pl}}} \{ \bar{\mathbf{5}}_M \bar{\mathbf{5}}_{F,H} \mathbf{10}_F \,, \, \mathbf{5}_M \mathbf{10}_F \mathbf{10}_F \dots \}$

$$\begin{split} V_B &= \mathrm{e}^{K/m_{\mathrm{Pl}}^2} \Bigg[K^{i\,j^*} \bigg(W \frac{K_i}{m_{\mathrm{Pl}}^2} + W_i \bigg) \bigg(W^* \, \frac{K_{j^*}}{m_{\mathrm{Pl}}^2} + W_{j^*}^* \bigg) - \frac{3 \, W W^*}{m_{\mathrm{Pl}}^2} \Bigg] \\ W &\to W + < W >, \quad < W > = \frac{1}{\sqrt{3}} < F_{TOT} > \times m_{\mathrm{Pl}} \simeq m_{3/2} m_{\mathrm{Pl}}^2 \\ & \Downarrow \\ \mathcal{R}\text{-Symmetry} & \text{Cosmological Cte} \simeq 0 \end{split}$$

$$\Rightarrow$$
 $K \supset f(\phi) \rightarrow W \supset \frac{< W>}{m_{\rm Pl}} f(\phi) = m_{3/2} f(\phi)$
Kähler, super-Weyl trans. $K \rightarrow K + f(\phi) + f^*(\phi^*)$, $W \rightarrow {\rm e}^{-f(\phi)} W$

e.g.
$$K_{\text{ren}} \supset \mathbf{5}_M \bar{\mathbf{5}}_F \to W \supset m_{3/2} \mathbf{5}_M \bar{\mathbf{5}}_F$$

e.g. $K_{\text{non-ren}} \supset \frac{1}{m_{Pl}} \{ \bar{\mathbf{5}}_M \bar{\mathbf{5}}_{F,H} \mathbf{10}_F \,, \, \mathbf{5}_M \mathbf{10}_F \mathbf{10}_F \dots \}$

$$E\gg m_{3/2} \ \Psi_{\mu}=i\sqrt{rac{2}{3}}\;rac{\partial_{\mu} ilde{G}}{m_{3/2}}+\ldots$$

$$\sim rac{m_{\lambda}}{m_{3/2}m_{Pl}} imes \partial$$

$$\sim rac{m_\chi^2 - m_\phi^2}{m_{3/2} m_{Pl}}$$

$$E\gg m_{3/2} \ \Psi_{\mu}=i\sqrt{rac{2}{3}}\;rac{\partial_{\mu} ilde{G}}{m_{3/2}}+\ldots$$

$$\sim rac{m_{\lambda}}{m_{3/2}m_{Pl}} imes \partial$$

$$\sim rac{m_\chi^2 - m_\phi^2}{m_{3/2} m_{Pl}}$$

However...there is much more to it!

 $\psi_{S} = \frac{F_{S}}{F_{TOT}}\tilde{\mathbf{G}} + \ldots \Rightarrow$ Consider the full Supergravity Lagrangian

Gravitino Problem, Messenger Solution

Gravitino Problem

$$T_{RH} \gtrsim T_{3/2}^f$$
 $< \sigma V > \simeq \frac{g_3^2 m_{gluino}^2}{m_{3/2} m_{Pl}^2}$ $\rightarrow < \sigma V > n_{rad} \lesssim H$

$$ightarrow T_{3/2}^f \simeq 1 \, TeV \Big(rac{m_{3/2}}{10 \, keV} \Big)^2 \Big(rac{1 \, TeV}{m_{gluino}} \Big)^2 \Big(rac{g_*}{230} \Big)^2$$
 $m_{3/2} \ll T_{3/2}^f$ relativistic at freeze-out

$$\Omega_{3/2} h^2 \simeq 5. \left(rac{m_{3/2}}{10 keV}
ight) \left(rac{230}{g_* (T_{3/2}^f)}
ight)$$

compare $\Omega_{3/2}h^2 \simeq 0.1$

dilution?
$$\simeq 40 \times \left(\frac{m_{3/2}}{10 \text{keV}}\right) \left(\frac{230}{g_*(T_{3/2}^r)}\right)$$

Messenger Solution

$$T_{RH}\gtrsim M_{s_-}$$

$$\Omega_M h^2 = \frac{s_0 \, \gamma_{s_-}}{\rho_c} M_{s_-}$$
 $Y_{s_-} \sim \frac{x_s}{M_{s_-}} \frac{1}{1/2} \frac{1}{1/2}$

$$\Omega_M h^2 \simeq 10^5 \left(rac{M_{\rm s}_-}{10^3 \, {
m TeV}}
ight)^2$$

IF STABLE
$$\Rightarrow \Omega_M \gg 1$$

THE LMP MUST BE

UNSTABLE

$$\Gamma_M \sim t_d^{-1} \sim H \sim T_d^2$$

$$T_d \stackrel{?}{<} T_{MD} \stackrel{?}{<} T_{3/2}^f \Rightarrow$$
 Important Gravitino Dilution

Gravitino Problem

$$\begin{split} T_{RH} &\gtrsim T_{3/2}^f \\ &< \sigma V > \simeq \frac{g_3^2 m_{gluino}^2}{m_{3/2} m_{Pl}^2} \\ &\rightarrow < \sigma V > n_{rad} \lesssim H \\ &\rightarrow T_{3/2}^f \simeq 1 \, \text{TeV} \Big(\frac{m_{3/2}}{10 \text{keV}}\Big)^2 \Big(\frac{1 \, \text{TeV}}{m_{gluino}}\Big)^2 \, \Big(\frac{g_*}{230}\Big)^{\frac{1}{2}} \\ m_{3/2} &\ll T_{3/2}^f \text{ relativistic at freeze-out} \end{split}$$

$$\Omega_{3/2}h^2\simeq 5.\left(rac{m_{3/2}}{10 \mathrm{keV}}
ight)\left(rac{230}{g_*(T_{3/2}^f)}
ight)$$

compare $\Omega_{3/2}h^2 \simeq 0.1$

dilution?
$$\simeq 40 imes \left(\frac{m_{3/2}}{10 \text{keV}} \right) \left(\frac{230}{g_*(T_{3/2}^f)} \right)$$

Messenger Solution

$$T_{RH}\gtrsim M_{s_-}$$

$$\Omega_{M}h^{2} = \frac{s_{0} Y_{s_{-}}}{\rho_{c}} M_{s_{-}}$$
 $Y_{s_{-}} \sim \frac{x_{f}}{M_{s_{-}} m_{Pl}} \frac{1}{<\sigma v > \frac{1}{g_{*}^{1/2}}} \frac{1}{g_{*}^{1/2}}$

$$\Omega_M h^2 \simeq 10^5 \left(\frac{M_{\rm s_-}}{10^3 \, {\rm TeV}} \right)^2$$
 IF STABLE $\Rightarrow \Omega_M \gg 1$!

IF STABLE
$$\Rightarrow \Omega_M \gg 1$$

THE LMP MUST BE

UNSTABLE

$$\Gamma_M \sim t_d^{-1} \sim H \sim T_d^2$$

 $T_d \stackrel{?}{<} T_{ND} \stackrel{?}{<} T_{3/2}^f \Rightarrow \text{Important Gravitino Dilution}$

Gravitino Problem

$$\begin{split} T_{RH} &\gtrsim T_{3/2}^f \\ &< \sigma V > \simeq \frac{g_3^2 m_{gluino}^2}{m_{3/2} m_{Pl}^2} \\ &\rightarrow < \sigma V > n_{rad} \lesssim H \\ &\rightarrow T_{3/2}^f \simeq 1 \, \text{Te} \, V \Big(\frac{m_{3/2}}{10 \, \text{keV}}\Big)^2 \Big(\frac{1 \, \text{Te} \, V}{m_{gluino}}\Big)^2 \, \Big(\frac{g_*}{230}\Big)^{\frac{1}{2}} \\ m_{3/2} &\ll T_{3/2}^f \, \text{relativistic at freeze-out} \end{split}$$

$$\Omega_{3/2}h^2\simeq 5.\left(rac{m_{3/2}}{10 \mathrm{keV}}
ight)\left(rac{230}{g_*(T_{3/2}^f)}
ight)$$

compare $\Omega_{3/2}h^2 \simeq 0.1$

dilution?
$$\simeq 40 imes \left(rac{m_{3/2}}{10 \text{keV}}
ight) \left(rac{230}{g_*(T_{3/2}^f)}
ight)$$

Messenger Solution

$$T_{RH} \gtrsim M_{s_{-}}$$

$$\Omega_M h^2 = \frac{s_0 \, Y_{s_-}}{\rho_c} M_{s_-}$$

$$Y_{s_{-}} \sim \frac{x_f}{M_{s_{-}} m_{Pl}} \frac{1}{<\sigma v>} \frac{1}{g_*^{1/2}}$$

$$\Omega_M h^2 \simeq 10^5 \left(\frac{M_{s_-}}{10^3 \text{ TeV}}\right)^2$$
IF STABLE $\Rightarrow \Omega_M \gg 1$

IF STABLE
$$\Rightarrow \Omega_M \gg 1$$
!

THE LMP MUST BE

UNSTABLE

$$\Gamma_M \sim t_d^{-1} \sim H \sim T_d^2$$

$T_d \stackrel{?}{<} T_{MD} \stackrel{?}{<} T_{3/2}^f \Rightarrow$ Important Gravitino Dilution

M. Fujii & T. Yanagida, PLB **549** (2002) 273. E. A. Baltz & H. Murayama, JHEP 0305:067 (2003).

⇒ Messenger number violating operators can originate from:

- ▶ a holomorphic contribution to the Kähler potential, with or without Planck scale suppression
- a renormalizable or non-renormalizable contribution to the superpotential
- ▶ a non-holomorphic contribution to the Kähler potential

 ⇒ for each case, take into account ALL couplings of the
 messenger and spurion sectors to the MSSM sector and to the
 gravitino (goldstino) in the Supergravity Lagrangian, to
 - ► the yield Y_{M} and the thermal freeze-out density of the lightest messenger
 - ▶ the background temperature at which the messenger dominates the energy density of the universe
 - ► The decay temperature T_d of the lightest messenger
- \rightarrow entropy release \rightarrow V^{after} \rightarrow V^{before} / Λ

$$\Delta_{s-} \approx 28 \left(\frac{M_{s-}}{10^8 \text{GeV}} \right) \left(\frac{Y_{s-}}{10^{-10}} \right) \left(\frac{\Gamma_{s-}}{10^{-25} \text{GeV}} \right)^{-\frac{1}{2}} \left(\frac{g_{>}}{10} \right)^{\frac{1}{4}}$$

- ⇒ Messenger number violating operators can originate from:
 - ▶ a holomorphic contribution to the Kähler potential, with or without Planck scale suppression
 - a renormalizable or non-renormalizable contribution to the superpotential
 - ▶ a non-holomorphic contribution to the Kähler potential
- ⇒ for each case, take into account ALL couplings of the messenger and spurion sectors to the MSSM sector and to the gravitino (goldstino) in the Supergravity Lagrangian, to calculate:
 - ▶ the yield Y_{M} and the thermal freeze-out density of the lightest messenger
 - ▶ the background temperature at which the messenger dominates the energy density of the universe T_{1.02} ≈ ⁴/₂M_s × Y_{1.1}
 - The decay temperature T_d of the lightest messenger
- \rightarrow entropy release \rightarrow Yafter = Ybefore $/\Delta_{s_{-}}$

$$\Delta_{s-} \approx 28 \left(\frac{M_{s-}}{10^8 \text{GeV}} \right) \left(\frac{Y_{s-}}{10^{-10}} \right) \left(\frac{\Gamma_{s-}}{10^{-25} \text{GeV}} \right)^{-\frac{1}{2}} \left(\frac{g_{>}}{10} \right)^{\frac{1}{4}}$$

- ⇒ Messenger number violating operators can originate from:
 - a holomorphic contribution to the Kähler potential, with or without Planck scale suppression
 - a renormalizable or non-renormalizable contribution to the superpotential
 - ▶ a non-holomorphic contribution to the Kähler potential
- ⇒ for each case, take into account ALL couplings of the messenger and spurion sectors to the MSSM sector and to the gravitino (goldstino) in the Supergravity Lagrangian, to calculate:
 - ▶ the yield Y_M and the thermal freeze-out density of the lightest messenger
 - ▶ the background temperature at which the messenger dominates the energy density of the universe T ~ ⁴/₅ M_o × Y
 - The decay temperature T_d of the lightest messenger
 - \rightarrow entropy release $\rightarrow Y_{3/2}^{after} = Y_{3/2}^{before}/\Delta_{S_{-}}$

$$\Delta_{s-} \approx 28 \left(\frac{M_{s-}}{10^8 \text{GeV}} \right) \left(\frac{Y_{s-}}{10^{-10}} \right) \left(\frac{\Gamma_{s-}}{10^{-25} \text{GeV}} \right)^{-\frac{1}{2}} \left(\frac{g_{>}}{10} \right)^{\frac{1}{4}}$$

- ⇒ Messenger number violating operators can originate from:
 - a holomorphic contribution to the Kähler potential, with or without Planck scale suppression
 - a renormalizable or non-renormalizable contribution to the superpotential
 - ▶ a non-holomorphic contribution to the Kähler potential
- ⇒ for each case, take into account ALL couplings of the messenger and spurion sectors to the MSSM sector and to the gravitino (goldstino) in the Supergravity Lagrangian, to calculate:
 - ▶ the yield Y_M and the thermal freeze-out density of the lightest messenger
 - ▶ the background temperature at which the messenger dominates the energy density of the universe $T_{MD} \simeq \frac{4}{3} M_{s-} \times Y_{M}$
 - ► The decay temperature T_d of the lightest messenger

$$\Delta_{s_{-}} \approx 28 \left(\frac{M_{s_{-}}}{10^{8} \text{GeV}} \right) \left(\frac{Y_{s_{-}}}{10^{-10}} \right) \left(\frac{\Gamma_{s_{-}}}{10^{-25} \text{GeV}} \right)^{-\frac{1}{2}} \left(\frac{g_{>}}{10} \right)^{\frac{1}{4}}$$

- ⇒ Messenger number violating operators can originate from:
 - ▶ a holomorphic contribution to the Kähler potential, with or without Planck scale suppression
 - a renormalizable or non-renormalizable contribution to the superpotential
 - ▶ a non-holomorphic contribution to the Kähler potential
- ⇒ for each case, take into account ALL couplings of the messenger and spurion sectors to the MSSM sector and to the gravitino (goldstino) in the Supergravity Lagrangian, to calculate:
 - ▶ the yield Y_M and the thermal freeze-out density of the lightest messenger
 - ▶ the background temperature at which the messenger dominates the energy density of the universe $T_{MD} \simeq \frac{4}{3} M_{S-} \times Y_{M}$
 - The decay temperature T_d of the lightest messenger
 - \rightarrow entropy release \rightarrow $Y_{3/2}^{after} = Y_{3/2}^{before}/\Delta_{s_{-}}$

$$\Delta_{s_{-}} \approx 28 \left(\frac{\textit{M}_{s_{-}}}{10^{8} \text{GeV}}\right) \left(\frac{\textit{Y}_{s_{-}}}{10^{-10}}\right) \left(\frac{\Gamma_{s_{-}}}{10^{-25} \text{GeV}}\right)^{-\frac{1}{2}} \left(\frac{\textit{g}_{>}}{10}\right)^{\frac{1}{4}}$$

...e.g. in *SU*(5)

$$K_{\text{ren}} \supset \mathbf{5}_M \mathbf{\bar{5}}_F \ \rightarrow W \supset \mathbf{m}_{3/2} \mathbf{5}_M \mathbf{\bar{5}}_F$$

$$\begin{split} W_{\text{ren}} &\supset \big\{ &\quad \mathbf{\bar{5}}_{M}\mathbf{\bar{5}}_{F,H}\mathbf{10}_{F}\,,\,\mathbf{5}_{M}\mathbf{10}_{F}\mathbf{10}_{F}\,,\,\mathbf{5}_{M}\mathbf{\bar{5}}_{F,H}\mathbf{24}_{H}\,,\\ &\quad \mathbf{\bar{5}}_{M}\mathbf{5}_{H}\mathbf{24}_{H}\,,\,\overline{\mathbf{10}}_{M}\mathbf{5}_{H}\mathbf{5}_{H}\,,\,\,\mathbf{10}_{M}\mathbf{\bar{5}}_{H,F}\mathbf{\bar{5}}_{H,F}\,,\\ &\quad \mathbf{10}_{M}\mathbf{10}_{F}\mathbf{5}_{H}\,,\,\,\mathbf{10}_{F}\overline{\mathbf{10}}_{M}\mathbf{24}_{H} \big\}. \end{split}$$

$$K_{\text{hol}} = \frac{W_{\text{ren}}}{m_{\text{Pl}}} + h.c.$$

...other possibilities...

$$\begin{array}{ll} \textit{W}_{\text{non-ren}} & \supset \frac{1}{\textit{m}_{\text{Pl}}} \left\{ & \bar{\mathbf{5}}_{\textit{M}} \mathbf{10}_{\textit{F}} \mathbf{10}_{\textit{F}} , \mathbf{5}_{\textit{M}} \mathbf{5}_{\textit{H}} \bar{\mathbf{5}}_{\textit{H},\textit{F}} \bar{\mathbf{5}}_{\textit{H},\textit{F}} , \\ & \bar{\mathbf{5}}_{\textit{M}} \mathbf{5}_{\textit{H}} \mathbf{5}_{\textit{H},\textit{F}} , \mathbf{5}_{\textit{M}} \mathbf{5}_{\textit{H}} \mathbf{5}_{\textit{H}} \mathbf{10}_{\textit{F}} , \\ & \bar{\mathbf{5}}_{\textit{M}} \bar{\mathbf{5}}_{\textit{H}} \mathbf{10}_{\textit{F}} \mathbf{24}_{\textit{H}} , \mathbf{5}_{\textit{M}} \bar{\mathbf{5}}_{\textit{H},\textit{F}} \mathbf{24}_{\textit{H}} \mathbf{24}_{\textit{H}} , \\ & \bar{\mathbf{5}}_{\textit{M}} \mathbf{5}_{\textit{H}} \mathbf{24}_{\textit{H}} \mathbf{24}_{\textit{H}} , \mathbf{10}_{\textit{F}} \bar{\mathbf{10}}_{\textit{M}} \mathbf{5}_{\textit{H}} \bar{\mathbf{5}}_{\textit{H},\textit{F}} , \\ & \bar{\mathbf{10}}_{\textit{M}} \bar{\mathbf{5}}_{\textit{H},\textit{F}} \bar{\mathbf{5}}_{\textit{H},\textit{F}} \bar{\mathbf{5}}_{\textit{H},\textit{F}} , \mathbf{10}_{\textit{M}} \mathbf{5}_{\textit{H}} \mathbf{5}_{\textit{H}} \mathbf{5}_{\textit{H}} , \\ & \bar{\mathbf{10}}_{\textit{M}} \bar{\mathbf{5}}_{\textit{H},\textit{F}} \bar{\mathbf{5}}_{\textit{H},\textit{F}} \bar{\mathbf{5}}_{\textit{H},\textit{F}} \bar{\mathbf{5}}_{\textit{H},\textit{F}} \bar{\mathbf{5}}_{\textit{H},\textit{F}} \bar{\mathbf{5}}_{\textit{H},\textit{F}} \mathbf{24}_{\textit{H}} , \\ & \bar{\mathbf{10}}_{\textit{M}} \mathbf{10}_{\textit{F}} \mathbf{24}_{\textit{H}} \mathbf{24}_{\textit{H}} , \mathbf{10}_{\textit{M}} \bar{\mathbf{5}}_{\textit{H}} \bar{\mathbf{5}}_{\textit{H}} \bar{\mathbf{5}}_{\textit{F}} , \\ & \bar{\mathbf{10}}_{\textit{M}} \bar{\mathbf{10}}_{\textit{H}} \mathbf{24}_{\textit{H}} \mathbf{24}_{\textit{H}} , \mathbf{5}_{\textit{M}} \bar{\mathbf{5}}_{\textit{M}} \bar{\mathbf{5}}_{\textit{F}} , \\ & \bar{\mathbf{10}}_{\textit{M}} \bar{\mathbf{10}}_{\textit{M}} \mathbf{10}_{\textit{M}} \mathbf{10}_{\textit{F}} \right\} \\ \end{array}$$

$$\begin{array}{ll} {\cal K}_{\rm non-hol} & \supset \frac{1}{m_{\rm Pl}} \big\{ & {\bf 5}_M^\dagger \bar{\bf 5}_{H,F} {\bf 10}_F \,, \, \bar{\bf 5}_M {\bf 5}_H^\dagger {\bf 10}_F \,, \, \bar{\bf 5}_M^\dagger {\bf 10}_F {\bf 10}_F \,, \\ & {\bf 5}_M^\dagger {\bf 5}_H {\bf 24}_H \,, \, {\bf 5}_M {\bf 5}_H^\dagger {\bf 24}_H \,, \, \bar{\bf 5}_M \bar{\bf 5}_{H,F}^\dagger {\bf 24}_H \,, \\ & \bar{\bf 5}_M^\dagger \bar{\bf 5}_{H,F} {\bf 24}_H \,, \, \, {\bf 10}_M^\dagger {\bf 5}_H {\bf 5}_H \,, \, \, \bar{\bf 10}_M \bar{\bf 5}_{H,F}^\dagger {\bf 5}_H \,, \\ & \bar{\bf 10}_M^\dagger \bar{\bf 5}_{H,F} \bar{\bf 5}_{H,F} \,, \, \, \bar{\bf 10}_M^\dagger {\bf 10}_F {\bf 5}_H \,, \, \, {\bf 10}_M {\bf 10}_F \bar{\bf 5}_{H,F}^\dagger \,, \\ & {\bf 10}_M^\dagger {\bf 10}_F {\bf 24}_H \,, \, \, {\bf 10}_M {\bf 10}_F^\dagger {\bf 24}_H \,, \, + {\rm h.c.} \big\} \end{array} \tag{1}$$

- ⇒ a few other things to worry about:
 - gravitino regeneration through messenger decay
 - MSSM particles production (especially NLSP) through messenger decay
 - out-of-equilibrium NLSP decay into gravitinos
 - BBN constraints
 - hot/warm dark matter components

$$\Rightarrow \Omega_{\scriptscriptstyle 3/2} \simeq \Omega_{\scriptscriptstyle 3/2}^{\it th} + \Omega_{\scriptscriptstyle 3/2}^{\it Mess} + \Omega_{\scriptscriptstyle 3/2}^{\it NLSP}$$

SU(5)

\Rightarrow The lightest messenger is weakly charged ($\tilde{\nu}_L$ -like)

 $\Omega_{3/2}$ in the plane $M_X - m_{3/2}$; $T_{\rm RH} = 10^{12} \, {\rm GeV}$; one pair of messengers sitting in ${\bf 5} + {\bf \bar 5}$; the lightest messenger X is $\tilde \nu_I$ -like, NLSP bino-like both panels. Left panel S heavier than X; Right panel S lighter than X.

$$K_{\text{ren}}\supset \mathbf{5}_M\mathbf{\bar{5}}_F \ \rightarrow W\supset \mathbf{m}_{3/2}\mathbf{5}_M\mathbf{\bar{5}}_F$$

 $X \to lepton + gaugino$ (Fuji, Yanagida) BUT other contributions from Supergravity sector and spurion field (depending on its mass):

$$XX \rightarrow \tilde{G}\tilde{G}, X \rightarrow \tilde{\nu}\tilde{G}\tilde{G}, X \rightarrow S\tilde{\nu}$$
 (if S lighter than X)

SO(10)

 A_{-} , A_{+} mass eigenstates; mass degeneracy among the A_{-} 's lifted by radiative corrections.

⇒ The lightest messenger is a MSSM singlet

 $XX \rightarrow gg$

 $XX \rightarrow gg$

 $XX \to \tilde{G}\tilde{G}$

SO(10)

\Rightarrow The lightest messenger is a gauge singlet ($\tilde{\nu}_R$ -like)

Contours of $\Omega_{3/2}$ in the plane $M_X-m_{3/2}$ for one pair of messengers sitting in ${\bf 16}+\overline{\bf 16}$ representations of SO(10); the lightest messenger X is a singlet under $SU(3)\times SU(2)\times U(1)$. Its loop-suppressed annihilation cross-section scales as $(\alpha_S/4\pi)^2\kappa^4/M_X^2$, (in the plot $\kappa^2\simeq\alpha_S/4\pi$) and it decays into sparticles through non-renormalizable operators with width $\Gamma\sim 10^{-3}M_X^3/m_{\rm Pl}^2$

Concluding remarks

- gravitino LSP is most natural in GMSB-like models
- messenger (and secluded) degrees of freedom can affect the thermal history of the early Universe
- ⇒ provides a solution to the gravitino problem AND makes the gravitino a viable candidate for cold dark matter.

 However, requires extensions of GMSB.
- \Rightarrow Generically favours SO(10) over SU(5) GUT groups.
 - T_{RH} can be very high → thermal leptogenesis , and entropy release not too high
 - ▶ right-handed stau or Neutralino NLSP, \rightarrow short-lived $\tau \simeq$ a few ns a few ms \rightarrow collider searches \smile
 - ▶ BBN constraints OK, bound state effects (*TNLSP*) irrelevant.
 - other gravitino problems (e.g. inflaton gravitino production) can be avoided
 - ▶ upper limits on thermal gravitino mass (≤ 16 eV) do not apply —
 - correlation between m_{3/2} and the MSSM soft masses still model-dependent... role of the susy breaking sector, coupling to supergravity, etc... _. underway...

...an experimental direct hint for such dark matter can come only from the colliders! but not easy to distinguish from other scenarios if NLSP decays outside the detector