Supersymmetry without a light higgs boson at the LHC

R. Franceschini

with L.Cavicchia and V.Rychkov

Scuola Normale Superiore and INFN Pisa

31/07/07

λ SuSy 0000	light higgs	heavy higgs ೦೦೦೦೦	pseudoscalar ୦୦୦	conclusions

Outline

2

- 1 λSuSy
 - Motivation
 - A supersymmetric heavy higgs(?)
 - The model
 - generic suspersymmetric phenomenology
 - light higgs
- 3 heavy higgs
 - Properties of H
 - Production
 - Decay
 - Analysis
 - λSUSY vs SM
- 4 pseudoscalar
 - Properties of A
 - Decay
 - λSUSY vs SM

5 conclusions

λSuS ●000	y	light higgs	heavy higg 00000	S	p s 0	eudoscala		conclusions
Motiva	tion							
			 				•.	

Higgs particle is missing and indirect information about its mass can be obtained under some prior using precision data and, assuming new physics doesn't affect S and T, m_h can be bounded: $76^{+33}_{-24}GeV$

SuSy effect can be quite mild in this analysis, leaving SM results almost untouched, but in this case the lightest CP-even scalar can't be much heavier than m_7 .

What if Nature is supersymmetric and the higgs is heavy?

λ SuSy

 $W = \lambda SH_u \cdot H_d + W_{MSSM}$

 λ is not bound by unification* but only by calculability of EWPO $\Rightarrow m_h \gg m_h^{MSSM}$

• $\lambda = 2 \Rightarrow m_h \simeq 250 \text{GeV}$ • $1.5 \le \tan \beta \le 3 \Rightarrow \text{prod.} \sim SM$ $350 \text{GeV} < m_{H^+} < 700 \text{GeV}$

no corrections from heavy $\tilde{t} \Rightarrow$ fully natural

Barbieri Hall Nomura Rychkov hep-ph/0607332

λ SuSy ○○●○	light higgs	heavy higgs	pseudoscalar 000	conclusions
The model				
		$W = \mu(S)H_1 \cdot H_2 +$	f(S)	

 $V = \Sigma_{i}\mu_{i}(S) \left|H_{i}\right|^{2} - \mu_{3}^{2}(S) \left(H_{1}H_{2} + h.c.\right) + \lambda^{2} \left|H_{1} \cdot H_{2}\right|^{2} + V(S) + small$

We assume the singlet is heavy $\sim 1 \text{ TeV}$ and nearly not mixed with the other scalars (little correction in any case)

λ SuSy ○○○●	light higgs	heavy higgs	pseudoscalar 000	conclusions
generic suspersym	metric phenomenology			
Pheno	menoloav			

\tilde{g} and \tilde{t}

Naturalness bounds (with 20% FT):

 $m_{ ilde{t}} \lesssim 600-800 GeV$

 $m_{ ilde{g}} \lesssim 1.2 - 1.6 \, TeV$

while we can take all other \tilde{q} , \tilde{l} and gaugino to be heavier.

Standard searches for decay chains with jets, leptons and $\not E_T$ apply and these particle are detectable with $10fb^{-1}$ or less.

DM

The lightest neutralino benefits of singlino-higgsino mixing and can be a DM with $m_{\chi_0} \simeq 100 - 200 GeV$

λ Su	Sy
000	0

light higgs

heavy higgs

light higgs

Properties

- $m_h \sim 200 300 GeV$
- $\Gamma_h \sim 2-8 GeV$
- $g_{HVV} \simeq g_{HVV}^{SM}$
- $g_{Htt} \simeq g_{Htt}^{SM}$

$h \rightarrow ZZ \rightarrow 4I$

- SM studies apply. Mass and width can be measured.
- Precision is not enough to discriminate between SM and λSUSY higgs.

Puzzling Supersymmetry?

This higgs boson is at odds with MSSM, but hints of SUSY from \tilde{g} and \tilde{t} are there. Could be a puzzle, but in λ SUSY this is natural.

λ SuSy 0000	light higgs	heavy higgs ●○○○○	pseudoscalar 000	conclusions
Properties of H				
Heavy I	Higgs			

- mostly due to:
 - $H \rightarrow hh$ (gray areas)
 - $H \rightarrow VV$ (black area)

λ SuSy 0000	light higgs	heavy higgs ○●○○○	pseudoscalar 000	conclusions
Production				

λ SuSy 0000	light higgs	heavy higgs ○○●○○	pseudoscalar 000	conclusions
Decay				

Can use we use H → hh to discover H?

• $H \rightarrow VV$ otherwise

 $H \rightarrow hh \rightarrow 2Z2V \rightarrow 6jl^+l^-$

Benchmark scenario: $\tan \beta = 2 \ m_{H^{\pm}} = 500 \ GeV$ $\sigma_{H}^{GF} \times BR = 2.4 \ fb$ $m_{H} = 555 \ GeV, \ \Gamma_{H} = 21 \ GeV$ $m_{h} = 250 \ GeV, \ \Gamma_{h} = 3.8 \ GeV$

λ SuSy 0000	light higgs	heavy higgs ○○○●○	pseudoscalar 000	conclusions
Analysis				

We assume at this time m_h has been measured

Invariant mass requirements

- 2 jets reconstruct a vector if m_{jj} is in m_V ± 8GeV
- 4 fermions reconstruct a higgs if *m*_{4f} is in *m_h* ± 33*GeV*

Event selection

- $\Delta R_{jj} > 0.7 \ p_T^j > 20 GeV$
- $\Delta R_{lj} > 0.1 \ p_T' > 10 GeV$
- $\eta_{\mathrm{e,l}} < 2.5$
- $80 GeV < m_{||} < 100 GeV$

... go through all combinations and ...

Relevant backgrounds

- *Z*6*j* : 1*pb* → 0.9*fb* (AlpGen)
- $t\bar{t}Z$: 6*fb* \rightarrow 0.15*fb* (Madgraph)

0000	iigin iiiggs	0000	000	conclusions
SUSY vs SM				

- Smearing of jets 4-vectors using $\frac{0.5}{\sqrt{E}} + 0.03$ to generate the smearing
- Flavour tagging is not relevant

BG norm. is conservative

PS and HAD are not taken into account

- BG peaks close to signal peak
- Extraction of BG from data could be not simple

$100 fb^{-1} \Rightarrow 6.0\sigma$

• Local event excess is very clear

•
$$g_{Hhh} \sim \lambda^2 \Rightarrow \lambda SUSY$$

λ SuSy 0000	light higgs	heavy higgs	pseudoscalar ●○○	conclusions
Properties of A				
Pseudo	oscalar			

 $m_{\rm A} = 500 \, {\rm GeV} - 800 \, {\rm GeV}$ $\Gamma_A \sim 10 GeV$ $BR(A \rightarrow t\bar{t}) = 0.5 - 0.9$ $BR(A \rightarrow hZ) = 0.07 - 0.4$

Cross Section (HIGLU)

- σ is few pb :-)
- BR is subdominant :-(

λ SuSy 0000	light higgs	heavy higgs ୦୦୦୦୦	pseudoscalar ○●○	conclusions
Decay				

PARTONIC LEVEL

BS:tan β = 2 $m_{H^{\pm}}$ = 500 GeV

$$\sigma_A^{\sf GF} imes {\it BR} = 5.5 {\it fb}$$

$$m_A = 615 \text{GeV}, \quad \Gamma_A = 11 \text{GeV}$$

 $m_h = 250 \text{GeV}, \quad \Gamma_h = 3.8 \text{GeV}$

Event Selection

- $\Delta R_{jj} > 0.4 \ p_T^j > 20 GeV$
- $\Delta R_{lj} > 0.4 \ p_T^l > 10 GeV$
- η_{*j*,*l*} < 2.5
- $80 GeV < m_{||} < 100 GeV$

Invariant mass requirements

Same strategy as for *H* but now $\delta_{m_b} = 18 GeV$

Relevant backgrounds

- Z4j (AlpGen)
- ZW2j (AlpGen)

λ SuSy 0000	light higgs	heavy higgs	pseudoscalar ⊙⊙●	conclusions
ASUSY vs SM				

S+BG vs BG

- Smearing of jets 4-vectors using $\frac{0.5}{\sqrt{E}} + 0.03$ to generate the smearing
- Flavour tagging is not relevant

PS and HAD are not taken into account.

$100 fb^{-1} \Rightarrow 6.2\sigma$

- Local event excess is very clear
- Peak is very clear
- A fit of the BG from data seems feasible

λ SuSy 0000	light higgs	heavy higgs ೦೦೦೦೦	pseudoscalar 000	conclusions

Conclusions

SUSY can be out there even with a heavy higgs

 m_h will discriminate between MSSM-like and λ SUSY-like

$$A \rightarrow hZ \rightarrow 2VZ \rightarrow 4jl^+l^-$$

and

$$H \rightarrow hh \rightarrow 4V \rightarrow 6jl^+l^-$$

have been studied as possible signature of λ SUSY (large g_{Hhh} is very peculiar)

\tilde{g}, \tilde{t} and LSP pheno still available

A and H observable at the LHC in high multiplicity final state

- 100*fb*⁻¹ could be enough to observe A and H
- a large Hhh coupling is natural in λSUSY

$m_h, m_H, m_A \Rightarrow \tan \beta, m_{H^{\pm}}, \lambda$

- λ allows to estimate the NP scale
- A fourth measuremt like m_{H[±]} or other decays would be a test for the theory