Squark and Gaugino Hadroproduction and Decays in Non-Minimal Flavour Violating Supersymmetry

Biörn Herrmann LPSC Grenoble

in collaboration with G. Bozzi, B. Fuks, and M. Klasen

[arXiv:0703.1826, accepted for publication in Nucl. Phys. B]

SUSY 07 Karlsruhe, 30 July 2007

- 1 Introduction
- 2 Experimental constraints
- 3 Benchmark points
- 4 Sparticle production
- 5 Conclusion

Constrained Minimal Flavour Violation (cMFV)

All flavour-violating elements of the squared sfermion mass matrices are zero

$$M_{\tilde{F}}^2 = \begin{pmatrix} M_{LL,1}^2 & 0 & 0 & m_1 m_{LR,1} & 0 & 0 \\ 0 & M_{LL,2}^2 & 0 & 0 & m_2 m_{LR,2} & 0 \\ 0 & 0 & M_{LL,3}^2 & 0 & 0 & m_3 m_{LR,3} \\ \hline m_1 m_{RL,1} & 0 & 0 & M_{RR,1}^2 & 0 & 0 \\ 0 & m_2 m_{RL,2} & 0 & 0 & M_{RR,2}^2 & 0 \\ 0 & 0 & m_3 m_{RL,3} & 0 & 0 & M_{RR,3}^2 \end{pmatrix}$$

All flavour-violating elements of the squared sfermion mass matrices are zero

$$M_{\tilde{F}}^2 = \begin{pmatrix} M_{LL,1}^2 & 0 & 0 & m_1 m_{LR,1} & 0 & 0 \\ 0 & M_{LL,2}^2 & 0 & 0 & m_2 m_{LR,2} & 0 \\ 0 & 0 & M_{LL,3}^2 & 0 & 0 & m_3 m_{LR,3} \\ \hline m_1 m_{RL,1} & 0 & 0 & M_{RR,1}^2 & 0 & 0 \\ 0 & m_2 m_{RL,2} & 0 & 0 & M_{RR,2}^2 & 0 \\ 0 & 0 & m_3 m_{RL,3} & 0 & 0 & M_{RR,3}^2 \end{pmatrix}$$

- Sfermion mixing $(\tilde{f}_L, \tilde{f}_R) \rightarrow (\tilde{f}_1, \tilde{f}_2)$ with flavour conservation
 - \rightarrow small first- and second-generation fermion masses: $m_1, m_2 \sim 0$
 - \rightarrow three flavour-conserving mixing angles: $\theta_{\tilde{b}}$, $\theta_{\tilde{t}}$, $\theta_{\tilde{\tau}}$

All flavour-violating elements of the squared sfermion mass matrices are zero

$$M_{\tilde{F}}^2 = \begin{pmatrix} M_{LL,1}^2 & 0 & 0 & m_1 m_{LR,1} & 0 & 0 \\ 0 & M_{LL,2}^2 & 0 & 0 & m_2 m_{LR,2} & 0 \\ 0 & 0 & M_{LL,3}^2 & 0 & 0 & m_3 m_{LR,3} \\ \hline m_1 m_{RL,1} & 0 & 0 & M_{RR,1}^2 & 0 & 0 \\ 0 & m_2 m_{RL,2} & 0 & 0 & M_{RR,2}^2 & 0 \\ 0 & 0 & m_3 m_{RL,3} & 0 & 0 & M_{RR,3}^2 \end{pmatrix}$$

- $\bullet \ \ \mathsf{Sfermion} \ \ \mathsf{mixing} \ (\tilde{\mathit{f}}_{\mathit{L}},\tilde{\mathit{f}}_{\mathit{R}}) \to (\tilde{\mathit{f}}_{1},\tilde{\mathit{f}}_{2}) \ \mathsf{with} \ \mathsf{flavour} \ \mathsf{conservation}$
 - \rightarrow small first- and second-generation fermion masses: $m_1, m_2 \sim 0$
 - \rightarrow three flavour-conserving mixing angles: $\theta_{\tilde{h}}$, $\theta_{\tilde{t}}$, $\theta_{\tilde{\tau}}$
- In the squark sector, flavour violation is governed by CKM-matrix (e.g. $\tilde{\chi}\tilde{q}q'$ vertex proportional to $V_{qq'}$)

Non-Minimal Flavour Violation (NMFV)

New sources of flavour violation when embedding SUSY in larger structures [Gabbiani et al. (1989)]

Non-Minimal Flavour Violation (NMFV)

- New sources of flavour violation when embedding SUSY in larger structures [Gabbiani et al. (1989)]
- Convenient parametrization for NMFV: $\Delta_{ij}^{qq'} \neq 0$

$$M_{\tilde{Q}}^2 = \begin{pmatrix} M_{LL,1}^2 & \Delta_{LL}^{12} & \Delta_{LL}^{13} & m_1 m_{LR,1} & \Delta_{LR}^{12} & \Delta_{LR}^{13} \\ \Delta_{LL}^{21} & M_{LL,2}^2 & \Delta_{LL}^{23} & \Delta_{LR}^{21} & m_2 m_{LR,2} & \Delta_{LR}^{23} \\ \Delta_{LL}^{31} & \Delta_{LL}^{32} & M_{LL,3}^{21} & \Delta_{LR}^{31} & \Delta_{LR}^{32} & m_3 m_{LR,3} \\ \hline m_1 m_{RL,1} & \Delta_{RL}^{12} & \Delta_{RL}^{13} & M_{RR,1}^{2} & \Delta_{RR}^{12} & \Delta_{RR}^{13} \\ \Delta_{RL}^{21} & m_2 m_{RL,2} & \Delta_{RL}^{23} & \Delta_{RR}^{21} & M_{RR,2}^{2} & \Delta_{RR}^{23} \\ \Delta_{RL}^{32} & \Delta_{RL}^{32} & m_3 m_{RL,3} & \Delta_{RR}^{31} & \Delta_{RR}^{32} & M_{RR,3}^{2} \end{pmatrix}$$

- New sources of flavour violation when embedding SUSY in larger structures [Gabbiani et al. (1989)]
- Convenient parametrization for NMFV: $\Delta_{ii}^{qq'} \neq 0$

$$M_{\tilde{Q}}^{2} = \begin{pmatrix} M_{LL,1}^{2} & \Delta_{LL}^{12} & \Delta_{LL}^{13} & m_{1}m_{LR,1} & \Delta_{LR}^{12} & \Delta_{LR}^{13} \\ \Delta_{LL}^{21} & M_{LL,2}^{2} & \Delta_{LL}^{23} & \Delta_{LR}^{21} & m_{2}m_{LR,2} & \Delta_{LR}^{23} \\ \Delta_{LL}^{31} & \Delta_{LL}^{32} & M_{LL,3}^{22} & \Delta_{LR}^{31} & \Delta_{LR}^{32} & m_{3}m_{LR,3} \\ \hline m_{1}m_{RL,1} & \Delta_{RL}^{12} & \Delta_{RL}^{13} & M_{RR,1}^{2} & \Delta_{RR}^{12} & \Delta_{RR}^{12} \\ \Delta_{RL}^{21} & m_{2}m_{RL,2} & \Delta_{RL}^{23} & \Delta_{RR}^{21} & M_{RR,2}^{2} & \Delta_{RR}^{23} \\ \Delta_{RL}^{32} & \Delta_{RL}^{32} & m_{3}m_{RL,3} & \Delta_{RR}^{31} & \Delta_{RR}^{32} & M_{RR,3}^{2} \end{pmatrix}$$

• Off-diagonal elements: 24 new free parameters $\lambda_{ii}^{qq'}$ [Gabbiani et al. (1996)]

$$\Delta_{ij}^{qq'} = \lambda_{ij}^{qq'} M_{ii,q} M_{jj,q'}$$

- New sources of flavour violation when embedding SUSY in larger structures [Gabbiani et al. (1989)]
- Convenient parametrization for NMFV: $\Delta_{ij}^{qq'} \neq 0$

$$M_{\tilde{Q}}^2 = \begin{pmatrix} M_{LL,1}^2 & \Delta_{LL}^{12} & \Delta_{LL}^{13} & m_1 m_{LR,1} & \Delta_{LR}^{12} & \Delta_{LR}^{13} \\ \Delta_{LL}^{21} & M_{LL,2}^2 & \Delta_{LL}^{23} & \Delta_{LR}^{21} & m_2 m_{LR,2} & \Delta_{LR}^{23} \\ \Delta_{LL}^{31} & \Delta_{LL}^{32} & M_{LL,3}^{22} & \Delta_{LR}^{31} & \Delta_{LR}^{32} & m_3 m_{LR,3} \\ \hline m_1 m_{RL,1} & \Delta_{RL}^{12} & \Delta_{RL}^{13} & M_{RR,1}^{2} & \Delta_{RR}^{12} & \Delta_{RR}^{13} \\ \Delta_{RL}^{21} & m_2 m_{RL,2} & \Delta_{RL}^{23} & \Delta_{RR}^{21} & M_{RR,2}^{2} & \Delta_{RR}^{23} \\ \Delta_{RL}^{32} & \Delta_{RL}^{32} & m_3 m_{RL,3} & \Delta_{RR}^{31} & \Delta_{RR}^{32} & M_{RR,3}^{2} \end{pmatrix}$$

• Off-diagonal elements: 24 new free parameters $\lambda_{ij}^{qq'}$ [Gabbiani et al. (1996)]

$$\Delta_{ij}^{qq'} = \lambda_{ij}^{qq'} M_{ii,q} M_{jj,q'}$$

• Diagonalization through 6×6 rotation matrices $(m_{\tilde{q}_1} < ... < m_{\tilde{q}_6})$ $(\tilde{u}_1, \tilde{u}_2, \tilde{u}_3, \tilde{u}_4, \tilde{u}_5, \tilde{u}_6)^T = R^u(\tilde{u}_L, \tilde{c}_L, \tilde{t}_L, \tilde{u}_R, \tilde{c}_R, \tilde{t}_R)^T$ $(\tilde{d}_1, \tilde{d}_2, \tilde{d}_3, \tilde{d}_4, \tilde{d}_5, \tilde{d}_6)^T = R^d(\tilde{d}_L, \tilde{s}_L, \tilde{b}_L, \tilde{d}_R, \tilde{s}_R, \tilde{b}_R)^T$

Scaling of the off-diagonal terms with SUSY breaking scale [Gabbiani et al. (1989)]

$$\Delta_{LL}^{qq'}\gg\Delta_{LR,RL}^{qq'}\gg\Delta_{RR}^{qq'}$$

Scaling of the off-diagonal terms with SUSY breaking scale [Gabbiani et al. (1989)]

$$\Delta_{LL}^{qq'}\gg\Delta_{LR,RL}^{qq'}\gg\Delta_{RR}^{qq'}$$

• Upper limits on $\lambda_{ii}^{qq'}$ from FCNC

Introduction

→ Neutral kaon sector, B- and D-meson oscillations, rare decays, electric dipole moments [Gabbiani et al. (1996), Ciuchini et al. (2007)]

• Scaling of the off-diagonal terms with SUSY breaking scale [Gabbiani et al. (1989)]

$$\Delta_{LL}^{qq'}\gg\Delta_{LR,RL}^{qq'}\gg\Delta_{RR}^{qq'}$$

• Upper limits on $\lambda_{ii}^{qq'}$ from FCNC

- → Neutral kaon sector, B- and D-meson oscillations, rare decays, electric dipole moments [Gabbiani et al. (1996), Ciuchini et al. (2007)]
- Constraints: only 2nd-3rd-generation mixing in the left-left sector

$$\lambda_{LL}^{ct} \leq 0.1, \qquad \lambda_{LL}^{bs} \leq 0.1, \qquad \text{other } \lambda_{ii}^{qq'} = 0$$

Constraints on Non-Minimal Flavour Violation

Scaling of the off-diagonal terms with SUSY breaking scale [Gabbiani et al. (1989)]

$$\Delta_{LL}^{qq'}\gg\Delta_{LR,RL}^{qq'}\gg\Delta_{RR}^{qq'}$$

- Upper limits on $\lambda_{ii}^{qq'}$ from FCNC
 - \rightarrow Neutral kaon sector, B- and D-meson oscillations, rare decays, electric dipole moments [Gabbiani et al. (1996), Ciuchini et al. (2007)]
- Constraints: only 2nd-3rd-generation mixing in the left-left sector

$$\lambda_{LL}^{ct} \leq 0.1, \qquad \lambda_{LL}^{bs} \leq 0.1, \qquad \text{other } \lambda_{ij}^{qq'} = 0$$

In our analysis: only one new free parameter

$$\lambda_{II}^{ct} = \lambda_{II}^{bs} \equiv \lambda$$

 \rightarrow no large difference allowed due to SU(2) gauge invariance

• Decay $b \rightarrow s\gamma$: NMFV contributes at the one-loop level (as also SM)

$$BR(b \to s\gamma) = (3.55 \pm 0.26) \times 10^{-4}$$
 (at 2σ) [Barbiero et al. (2006)]

• Decay $b \rightarrow s\gamma$: NMFV contributes at the one-loop level (as also SM)

$$BR(b \to s\gamma) = (3.55 \pm 0.26) \times 10^{-4}$$
 (at 2σ) [Barbiero et al. (2006)]

• Electroweak ρ -parameter: sensitive to squark mass splitting

$$\Delta \rho = 0.00102 \pm 0.00086$$
 (at 2σ) [Yao et al. (2006)]

Low-energy, EW precision and cosmological constraints

• Decay $b \rightarrow s\gamma$: NMFV contributes at the one-loop level (as also SM)

$${\sf BR}(b \to s \gamma) = (3.55 \pm 0.26) \times 10^{-4} \quad ({\sf at} \ 2\sigma) \ \ [{\sf Barbiero} \ {\it et} \ {\it al.} \ (2006)]$$

• Electroweak ρ -parameter: sensitive to squark mass splitting

$$\Delta \rho = 0.00102 \pm 0.00086$$
 (at 2σ) [Yao et al. (2006)]

• New physics contribution to the anomalous magnetic moment of the muon:

$$a_{\mu}^{SUSY} = (g-2)_{\mu}^{SUSY} = (22\pm10)\times10^{-10}$$
 (at 2σ) [Yao et al. (2006)]

- → squarks contribute only at two-loop level (SM: one-loop)
- \rightarrow disfavours μ < 0

Low-energy, EW precision and cosmological constraints

• Decay $b \rightarrow s\gamma$: NMFV contributes at the one-loop level (as also SM)

$$\mathsf{BR}(b \to s \gamma) = (3.55 \pm 0.26) \times 10^{-4} \quad (\mathsf{at} \; 2\sigma) \; \; \mathsf{[Barbiero} \; \mathit{et al.} \; (2006) \mathsf{]}$$

• Electroweak ρ -parameter: sensitive to squark mass splitting

$$\Delta \rho = 0.00102 \pm 0.00086$$
 (at 2σ) [Yao et al. (2006)]

• New physics contribution to the anomalous magnetic moment of the muon:

$$a_{\mu}^{SUSY} = (g-2)_{\mu}^{SUSY} = (22\pm10)\times10^{-10}~{
m (at~}2\sigma)~{
m [Yao~}$$
 et al. (2006)]

- → squarks contribute only at two-loop level (SM: one-loop)
- \rightarrow disfavours μ < 0

Introduction

Dark matter candidate: LSP neutral in charge and colour [Ellis et al. (1984)]

• Decay $b \rightarrow s\gamma$: NMFV contributes at the one-loop level (as also SM)

$${\sf BR}(b \to s \gamma) = (3.55 \pm 0.26) \times 10^{-4} \quad ({\sf at} \ 2\sigma) \quad [{\sf Barbiero} \ {\it et \ al.} \ (2006)]$$

• Electroweak ρ -parameter: sensitive to squark mass splitting

$$\Delta
ho = 0.00102 \pm 0.00086$$
 (at 2σ) [Yao et al. (2006)]

• New physics contribution to the anomalous magnetic moment of the muon:

$$a_{\mu}^{SUSY} = (g-2)_{\mu}^{SUSY} = (22\pm10)\times10^{-10}~{
m (at~}2\sigma)~{
m [Yao~}$$
 et al. (2006)]

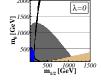
- → squarks contribute only at two-loop level (SM: one-loop)
- \rightarrow disfavours $\mu < 0$

- Dark matter candidate: LSP neutral in charge and colour [Ellis et al. (1984)]
- Neutralino relic density:

$$0.094 < \Omega_{CDM} h^2 < 0.136$$
 (at 2σ) [Hamann et al. (2007)]

- Inspect mSUGRA scenario
 - → Spectrum and constraints calculated using SPheno 2.2.3, FeynHiggs 2.5.1, and modified DarkSUSY 4.1 [Porod (2003), Heinemeyer et al. (2000), Gondolo et al. (2004)]

- Inspect mSUGRA scenario at tan $\beta = 10$, $\mu > 0$, $A_0 = 0$, and for $0 < \lambda < 0.1$
 - → Spectrum and constraints calculated using SPheno 2.2.3, FeynHiggs 2.5.1, and modified DarkSUSY 4.1 [Porod (2003), Heinemeyer et al. (2000), Gondolo et al. (2004)]



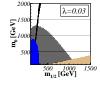
- Inspect mSUGRA scenario at tan $\beta=10,~\mu>0,~A_0=0,$ and for $0\leq\lambda\leq0.1$
 - → Spectrum and constraints calculated using SPheno 2.2.3, FeynHiggs 2.5.1, and modified DarkSUSY 4.1 [Porod (2003), Heinemeyer et al. (2000), Gondolo et al. (2004)]

- Region favoured by a_{μ} (grey)
 - → reduced squark two-loop vs. slepton one-loop contributions

- Inspect mSUGRA scenario at $\tan \beta = 10$, $\mu > 0$, $A_0 = 0$, and for $0 \le \lambda \le 0.1$
 - → Spectrum and constraints calculated using SPheno 2.2.3, FeynHiggs 2.5.1, and modified DarkSUSY 4.1 [Porod (2003), Heinemeyer et al. (2000), Gondolo et al. (2004)]

- Region favoured by a_{μ} (grey)
 - \rightarrow reduced squark two-loop vs. slepton one-loop contributions
- Region excluded by $b \rightarrow s\gamma$ (blue)
 - → very sensitive to NMFV (same loop-level as SM contributions)

- Inspect mSUGRA scenario at $\tan \beta = 10, \ \mu > 0, \ A_0 = 0, \ {\rm and \ for} \ 0 \le \lambda \le 0.1$
 - → Spectrum and constraints calculated using SPheno 2.2.3, FeynHiggs 2.5.1, and modified DarkSUSY 4.1 [Porod (2003), Heinemeyer et al. (2000), Gondolo et al. (2004)]



- Region favoured by a_{μ} (grey)
 - \rightarrow reduced squark two-loop vs. slepton one-loop contributions
- Region excluded by $b \to s \gamma$ (blue)
 - → very sensitive to NMFV (same loop-level as SM contributions)
- Region leading to charged LSP (beige)

- Inspect mSUGRA scenario at tan $\beta = 10$, $\mu > 0$, $A_0 = 0$, and for $0 < \lambda < 0.1$
 - → Spectrum and constraints calculated using SPheno 2.2.3, FeynHiggs 2.5.1, and modified DarkSUSY 4.1 [Porod (2003), Heinemeyer et al. (2000), Gondolo et al. (2004)]

- Region favoured by a_{tt} (grey)
 - → reduced squark two-loop vs. slepton one-loop contributions
- Region excluded by $b \rightarrow s\gamma$ (blue)
 - → very sensitive to NMFV (same loop-level as SM contributions)
- Region leading to charged LSP (beige)
- Region favoured by Ω_{CDM} (black)
 - → sensitivity to NMFV very small

- Inspect mSUGRA scenario at tan $\beta = 10$, $\mu > 0$, $A_0 = 0$, and for $0 < \lambda < 0.1$
 - → Spectrum and constraints calculated using SPheno 2.2.3, FeynHiggs 2.5.1, and modified DarkSUSY 4.1 [Porod (2003), Heinemeyer et al. (2000), Gondolo et al. (2004)]

- Region favoured by a_{tt} (grey)
 - → reduced squark two-loop vs. slepton one-loop contributions
- Region excluded by $b \rightarrow s\gamma$ (blue)
 - → very sensitive to NMFV (same loop-level as SM contributions)
- Region leading to charged LSP (beige)
- Region favoured by Ω_{CDM} (black)
 - → sensitivity to NMFV very small
 - $\Delta \rho$ excludes only very high SUSY masses (not shown)

• We propose the following allowed benchmark points [Bozzi, Fuks, BjHe, Klasen (2007)]

	m_0 [GeV]	$m_{1/2}$ [GeV]	A_0 [GeV]	aneta	$sgn(\mu)$	λ bounds
Α	700	200	0	10	+	[0; 0.05]
В	100	400	0	10	+	[0; 0.10]
С	230	590	0	30	+	[0; 0.05]
D	600	700	0	50	+	[0; 0.05]

Benchmark points for mSUGRA

• We propose the following allowed benchmark points [Bozzi, Fuks, BjHe, Klasen (2007)]

	m_0 [GeV]	$m_{1/2}$ [GeV]	A_0 [GeV]	taneta	$sgn(\mu)$	λ bounds
Α	700	200	0	10	+	[0; 0.05]
В	100	400	0	10	+	[0; 0.10]
C	230	590	0	30	+	[0; 0.05]
D	600	700	0	50	+	[0; 0.05]

 \rightarrow benchmark points also allowed for cMFV scenarios ($\lambda = 0$) and MFV scenarios ($\lambda \in [0, 0.005...0.01]$)

Benchmark points for mSUGRA

We propose the following allowed benchmark points [Bozzi, Fuks, BiHe, Klasen (2007)]

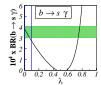
	m_0 [GeV]	$m_{1/2}$ [GeV]	A_0 [GeV]	$\tan\beta$	$sgn(\mu)$	λ bounds
Α	700	200	0	10	+	[0; 0.05]
В	100	400	0	10	+	[0; 0.10]
C	230	590	0	30	+	[0; 0.05]
D	600	700	0	50	+	[0; 0.05]

- \rightarrow benchmark points also allowed for cMFV scenarios ($\lambda = 0$) and MFV scenarios ($\lambda \in [0, 0.005...0.01]$)
- In this talk: focus on benchmark point B
 - → "collider-friendly" $(m_{\tilde{i}} \sim 200 - 300, \ m_{\tilde{\chi}} \sim 150 - 550, \ m_{\tilde{a}} \sim 650 - 850, \ m_{\tilde{g}} \sim 900 \ \text{GeV})$

• We propose the following allowed benchmark points [Bozzi, Fuks, BjHe, Klasen (2007)]

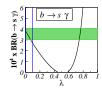
	m_0 [GeV]	$m_{1/2}$ [GeV]	A_0 [GeV]	taneta	$sgn(\mu)$	λ bounds
Α	700	200	0	10	+	[0; 0.05]
В	100	400	0	10	+	[0; 0.10]
C	230	590	0	30	+	[0; 0.05]
D	600	700	0	50	+	[0; 0.05]

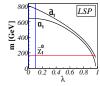
- \rightarrow benchmark points also allowed for cMFV scenarios ($\lambda=0$) and MFV scenarios ($\lambda\in[0,0.005...0.01]$)
- In this talk: focus on benchmark point B
 - ightarrow "collider-friendly" ($m_{ ilde{l}}\sim 200-300,\ m_{ ilde{v}}\sim 150-550,\ m_{ ilde{o}}\sim 650-850,\ m_{ ilde{e}}\sim 900\ {
 m GeV})$
 - → numerical study of constraints, squark mass splitting and flavour content, squark and gaugino production and decay


• $a_{\mu}^{SUSY} \simeq 14 \times 10^{-4}$ independent of λ (not shown)

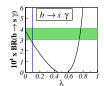
Point B: Constraints

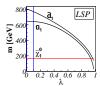
- $a_{\mu}^{SUSY} \simeq 14 imes 10^{-4}$ independent of λ (not shown)
- ullet $\Delta \rho$ depends strongly on squark flavours, helicity and masses
 - ightarrow large allowed range ($\lambda \leq$ 0.52), due to important experimental errors




- $a_{\mu}^{SUSY} \simeq 14 \times 10^{-4}$ independent of λ (not shown)
- ullet $\Delta
 ho$ depends strongly on squark flavours, helicity and masses
 - ightarrow large allowed range ($\lambda \leq$ 0.52), due to important experimental errors
- Very stringent constraint from $b \rightarrow s \gamma$
 - ightarrow small error band and very sensitive to λ
 - $ightarrow 2^{nd}$ allowed region disfavoured by $B
 ightarrow X_s \mu \mu$ [Gambino et al. (2005)]

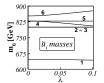
Point B: Constraints



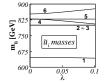


- $a_{\mu}^{SUSY} \simeq 14 \times 10^{-4}$ independent of λ (not shown)
- ullet $\Delta
 ho$ depends strongly on squark flavours, helicity and masses
 - ightarrow large allowed range ($\lambda \leq$ 0.52), due to important experimental errors
- Very stringent constraint from $b \rightarrow s \gamma$
 - ightarrow small error band and very sensitive to λ
 - $ightarrow 2^{nd}$ allowed region disfavoured by $B
 ightarrow X_s \mu \mu$ [Gambino et al. (2005)]
- lacktriangle Small mass difference between LSP and NLSPs at large λ
 - $\rightarrow \Omega_{CDM} h^2$ falls due to important coannihilations and light squark propagated annihilation processes

0.2 0.4 0.6 0.8

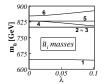


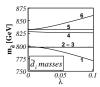
- $a_{\mu}^{SUSY} \simeq 14 \times 10^{-4}$ independent of λ (not shown)
- ullet $\Delta
 ho$ depends strongly on squark flavours, helicity and masses
 - ightarrow large allowed range ($\lambda \leq$ 0.52), due to important experimental errors
- lacktriangle Very stringent constraint from $b o s\gamma$
 - ightarrow small error band and very sensitive to λ
 - ightarrow 2 nd allowed region disfavoured by B
 ightarrow $X_{5}\mu\mu$ [Gambino et al. (2005)]
- ullet Small mass difference between LSP and NLSPs at large λ
 - $ightarrow \Omega_{CDM} h^2$ falls due to important coannihilations and light squark propagated annihilation processes
- \implies Allowed region close to (c)MFV: $0 \lesssim \lambda \lesssim 0.1$


Point B: Mass splitting and flavour content

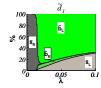
[Bozzi, Fuks, BjHe, Klasen (2007)]

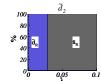
Point B: Mass splitting and flavour content

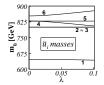


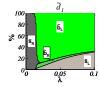

Benchmark points

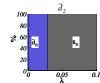
[Bozzi, Fuks, BjHe, Klasen (2007)]

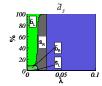

- ullet Hermitian squark mass matrices depend continously on the single parameter λ
 - → their eigenvalues do not cross (avoided crossings)
 - → exchange of the flavour content between the involved eigenstates


Point B: Mass splitting and flavour content


- ullet Hermitian squark mass matrices depend continously on the single parameter λ
 - → their eigenvalues do not cross (avoided crossings)
 - ightarrow exchange of the flavour content between the involved eigenstates

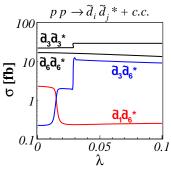

Point B: Mass splitting and flavour content





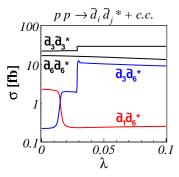
[Bozzi, Fuks, BiHe, Klasen (2007)]

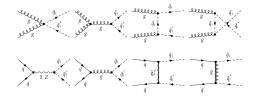
- Hermitian squark mass matrices depend continously on the single parameter λ
 - → their eigenvalues do not cross (avoided crossings)
 - → exchange of the flavour content between the involved eigenstates



Large mixing between 2^{nd} and 3^{rd} generations, even for small λ

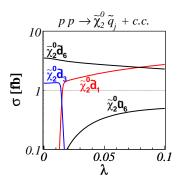
Point B: Squark-antisquark pair production at the LHC

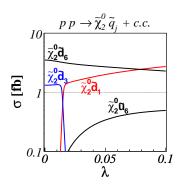


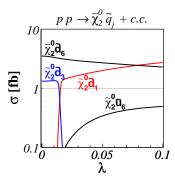


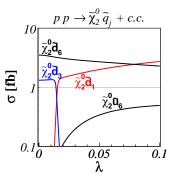
- Diagonal pairs dominated by gluon fusion diagrams
 - → strong production, i.e. large cross section
 - \rightarrow low sensitivity to λ due to flavour independent $g\tilde{q}\tilde{q}$ vertex

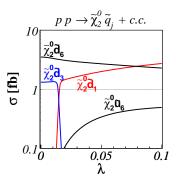
Introduction


Point B: Squark-antisquark pair production at the LHC



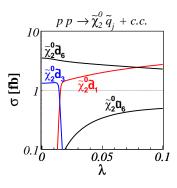

- Diagonal pairs dominated by gluon fusion diagrams
 - \rightarrow strong production, i.e. large cross section
 - \rightarrow low sensitivity to λ due to flavour independent $g\tilde{q}\tilde{q}$ vertex
- Non-diagonal pairs: only $q\bar{q}$ annihilation diagrams
 - ightarrow sharp transitions with λ , corresponding to avoided crossings and mass flips




• Semi-strong production (0.1 - 10 fb)

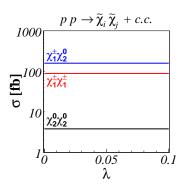
[Bozzi, Fuks, BjHe, Klasen (2007)] $\tilde{\chi}_{j} \qquad \tilde{\chi}_{j}$ $\tilde{q}_{i} \qquad \tilde{q}_{i}$ $\tilde{q}_{i} \qquad \tilde{q}_{i}$ $\tilde{q}_{i} \qquad \tilde{q}_{i}$ $\tilde{q}_{i} \qquad \tilde{q}_{i}$

- Semi-strong production (0.1 10 fb)
- Quite sensitive to flavour violation due to $q\tilde{q}\tilde{\chi}$ vertex \rightarrow avoided crossing / mass-flip between \tilde{d}_1 and \tilde{d}_3


[Bozzi, Fuks, BiHe, Klasen (2007)]

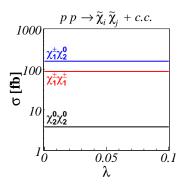
- Semi-strong production (0.1 10 fb)
- Quite sensitive to flavour violation due to $q\tilde{q}\tilde{\chi}$ vertex \rightarrow avoided crossing / mass-flip between \tilde{d}_1 and \tilde{d}_3
- $\tilde{d}_6\tilde{\chi}_2^0$ cross section decreases with λ due to strange/bottom content in \tilde{d}_6

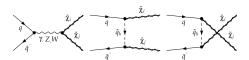
0.05


0.1

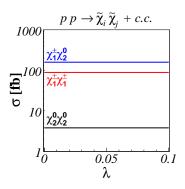


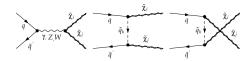
[Bozzi, Fuks, BiHe, Klasen (2007)] 100 ĩ, 80 × 60 40 20 20 0.05 0.05 0.1


- Semi-strong production (0.1 10 fb)
- Quite sensitive to flavour violation due to $q\tilde{q}\tilde{\chi}$ vertex \rightarrow avoided crossing / mass-flip between \tilde{d}_1 and \tilde{d}_3
- $\tilde{d}_6\tilde{\chi}^0_2$ cross section decreases with λ due to strange/bottom content in \tilde{d}_6
- $\tilde{u}_6 \tilde{\chi}_2^0$ cross section increases with λ due to charm/top content in \tilde{u}_6



Point B: Gaugino pair production at the LHC




[Bozzi, Fuks, BiHe, Klasen (2007)]

Large cross sections due to light gauginos

Point B: Gaugino pair production at the LHC

- Large cross sections due to light gauginos
- Insensitive to flavour violation
 - \rightarrow sum over all physical squark states

Conclusion and perspectives

- We implement NMFV in MSSM at low energy
 - → generalized strong and electroweak couplings
 - → analytical squark and gaugino production and decay calculation

Introduction

- We implement NMFV in MSSM at low energy
 - \rightarrow generalized strong and electroweak couplings
 - → analytical squark and gaugino production and decay calculation
- We propose benchmark points for mSUGRA including NMFV
 - \rightarrow low energy, electroweak precision and cosmological constraints
 - → numerical study of squark and gaugino production at LHC

Introduction

We implement NMFV in MSSM at low energy

- → generalized strong and electroweak couplings
- → analytical squark and gaugino production and decay calculation

We propose benchmark points for mSUGRA including NMFV

- → low energy, electroweak precision and cosmological constraints
- → numerical study of squark and gaugino production at LHC

Work in progress / Perspectives

- → numerical decay study (include 3-body decays)
- → similar analysis for GMSB scenario (include gravitino)
- → implement higher order corrections
- \rightarrow analysis for $\lambda_{II}^{sb} \neq \lambda_{II}^{ct}$