Smooth Heterotic Compactifications and anomalous $\mathrm{U}(1) \mathrm{s}$

hep-th/0612030 by G.H. and Michele Trapletti
\& hep-th/0602101 by G.H.

Gabriele Honecker
Gabriele.Honecker@cern.ch

CERN

Nの\&iNation

Different string theory model building strategies:

- Heterotic Abelian orbifolds of $E_{8} \times E_{8}$ since $\sim{ }^{\prime} 87$ see review talk by Nilles, also Groot Nibbelink, Kyae, Lebedev, Lüdeling, Wingerter
- Heterotic $E_{8} \times E_{8}$ GUTs $S O(10)$ or $S U(5)$ on Calabi-Yaus with $S U(4)$ or $S U(5)$ bundles \sim ' 99
- D-brane model building with intersecting or magnetised branes in type II orientifolds, Gepner models ... ~ '99 see Gmeiner, Suruliz
Intersecting branes have description via cycles at orbifold point and on Calabi-Yau's Magnetic backgrounds are S-dual to heterotic SO(32) compactifications with $U(1)$ backgrounds

Relations of heterotic orbifolds and $C Y_{3}$ compactifications?

Motivation

This talk:
Consider heterotic $K 3$ compactifications to $\mathcal{N}=1$ in 6 D and their T^{4} / \mathbb{Z}_{N} orbifold limits:

- $K 3$ is unique
- check from $\operatorname{tr} R^{4}, \operatorname{tr}_{S U(N)} F^{4}, \operatorname{tr}_{S O(2 M)} F^{4}$ anomaly cancellation in 6D: the massless spectrum with all singlets is known completely

For simplicity restrict to

- perturbative vacua, no 5-branes

Het. T^{4} / \mathbb{Z}_{N} orbifolds: consistency

- Geometry: singular $K 3$ limit: T^{4} / \mathbb{Z}_{N} with $N=2,3,4,6$ given by rotation:

$$
\theta: z_{k} \rightarrow e^{2 \pi v_{k}} z_{k} \quad \vec{v}=\frac{1}{N}(1,-1)
$$

$$
N=3:
$$

- Z3 fixed point

- Orbifold action is embedded into gauge d.o.f. via shift vector

$$
\vec{V}=\frac{1}{N}(1, \ldots, 1,2, \ldots, 2, \ldots, 0, \ldots, 0)
$$

- Quadratic level matching condition:
$N\left(\sum_{i} V_{i}^{2}-\sum_{i} v_{i}^{2}\right)=0 \bmod 2$
- Linear: Spinors in the gauge bundle: $N \sum_{i} V_{i}=0 \bmod 2$

Spectra \& anomalies

Massless spectra are computed from the weight vectors $\vec{w}=\left(\underline{ \pm 1, \pm 1,0^{14}}\right)$ of e.g. $S O(32)\left(E_{8} \times E_{8}\right.$ discussion identical):

- gauge group: $\vec{w} \cdot \vec{V} \in \mathbb{Z}$, untwisted matter: $\vec{w} \cdot \vec{V} \notin \mathbb{Z}$
- normalise $U(1)$ charges to fit with untwisted sector of smooth case
- $n^{\text {th }}$ twisted matter: $\vec{w}-n \vec{V}$ twisted ground state -count fixed points
-identify oscillator states which lift tachyonic vacuum to massless level
\Rightarrow anomaly polynomial factorises as 4×4 G.H., Trapletti, 0612030
\Rightarrow absence of 2×6 term indicates that $U(1)$ s are massless at the orbifold point

Anomalies

Anomaly arises via fermion loops (tensors also possible, but perturbative contributions cancel among universal tensor and SUGRA part)

- $\operatorname{tr} R^{4}$ and $\operatorname{tr} F^{4}$ anomalies are pathological - absent
- only factorisable anomalies can be cancelled
- on orbifolds: 4×4 factorisation only

T^{4} / \mathbb{Z}_{N} anomaly polynomial

G.H. \& M. Trapletti, hep-th/0612030

Pert. anomaly polynomial at the orbifold point, e.g. $S O(32)$:

$$
\begin{array}{r}
\left(\operatorname{tr} R^{2}+\sum_{i} \alpha_{i} \operatorname{tr}_{S O\left(2 M_{i}\right)} F^{2}+\sum_{j} \beta_{j} \operatorname{tr}_{S U\left(N_{j}\right)} F^{2}+\sum_{k} \gamma_{k} F_{U(1)_{k}}^{2}+\sum_{i<j} \delta_{i j} F_{U(1)_{i}} F_{U(1)_{j}}\right) \\
\times\left(\operatorname{tr} R^{2}-\sum_{i} \operatorname{tr}_{S O\left(2 M_{i}\right)} F^{2}-2 \sum_{j} \operatorname{tr}_{S U\left(N_{j}\right)} F^{2}+\sum_{k} \tilde{\gamma}_{k} F_{U(1)_{k}}^{2}\right)=I_{8}^{S O(3}
\end{array}
$$

with

- at most two $S O\left(2 M_{i}\right)$ factors
- regular case: $\alpha=2$ and only fundamental reps. of $S O(2 M)$ occur
- exceptions: $\alpha \leq 1$ and spinor reps. of $S O(2 M)$
- $\beta \leq 1$
\Rightarrow Match coefficients with smooth $K 3$ case

Heterotic $K 3$ compactifications

G.H. hep-th/0602101

For both $S O(32)$ and $E_{8} \times E_{8}$ compactifications:

- $\mathcal{N}=1$ SUSY in $6 \mathrm{D} \Leftrightarrow \mathbb{R}^{1,5} \times K 3$
- Switch on gauge background bundle along $K 3$
'standard embedding': spin = gauge connection: $S U(2)$ bundle on $K 3$
- Perturbative gauge group is the commutant of the background bundle in $E_{8} \times E_{8}$ or $S O(32)$
- Massless spectrum determined for given bundle
- No $\operatorname{tr} R^{4}, \operatorname{tr}_{S U(N)} F^{4}, \operatorname{tr}_{S O(2 M)} F^{4}$ anomalies
- Factorisable field theory anomalies need to be cancelled by generalised Green Schwarz (GS) mechanism
\Rightarrow massive $U(1)$ s occur, geometric moduli frozen

Consistency conditions:

Background gauge bundle V with field strength \bar{F} is SUSY:

- \bar{F} is holomorphic $(1,1)$ and primitive $\int_{K 3} J \wedge \operatorname{tr} \bar{F}=0$:
J : Kähler form on $K 3$
$\Rightarrow 2+1$ geometric moduli frozen
- K3: 20 neutral hyper multiplets:
-19: 3 geometric $+1 B$-field modulus
-1: $K 3$ volume $+B$-field triplet SUSY \Rightarrow massive mult. if B also frozen: GS couplings
- Linear: 'K-theory constraint' in order to have spinors on the worldsheet

$$
N \sum_{i} V_{i}=0 \bmod 2 \Leftrightarrow
$$

$$
\frac{1}{2 \pi} \operatorname{tr} \bar{F} \equiv c_{1}\left(W_{\text {total }}\right) \in H^{2}(K 3,2 \mathbb{Z})
$$

- Quadratic: Bianchi identity on $H_{3}=d B-\frac{\alpha^{\prime}}{4}\left(\omega_{Y M}-\omega_{L}\right)$:

$$
N \sum_{i}\left(V_{i}^{2}-v_{i}^{2}\right)=0 \bmod 2 \Leftrightarrow \quad \operatorname{tr} \bar{F}^{2}-\operatorname{tr} \bar{R}^{2}=0
$$

Massless spectra

Massless spectrum contains:

- $\mathcal{N}=1$ SUGRA multiplet
- 20 neutral hyper mults.
-1 universal tensor mult. (dilaton + truncation of B to 6D)
\bullet Gauge group \& charged hyper mults. model dependent

Decomposition of the adjoint of $\mathrm{SO}(32)$
$\rightarrow S O(2 M) \times \prod_{j=1}^{K} U\left(N_{j} n_{j}\right)$ leads to the assignment of bundles and matter reps:
$\mathbf{4 9 6} \rightarrow\left(\begin{array}{c}\left(\mathbf{A n t i}_{S O(2 M}, \mathbf{1}\right)+\sum_{j=1}^{K}\left(\operatorname{Adj}_{U\left(N_{j}\right)} ; \operatorname{Adj}_{U\left(n_{j}\right)}\right) \\ \sum_{j=1}^{K}\left(\mathbf{A n t i}_{U\left(N_{j}\right)} ; \operatorname{Sym}_{U\left(n_{j}\right)}\right)+\left(\mathbf{S y m}_{U\left(N_{j}\right)} ; \operatorname{Anti}_{U\left(n_{j}\right)}\right)+h \\ \sum_{i<j}\left(\mathbf{N}_{i}, \mathbf{N}_{j} ; \mathbf{n}_{i}, \mathbf{n}_{j}\right)+\left(\mathbf{N}_{i}, \overline{\mathbf{N}}_{j} ; \mathbf{n}_{i}, \overline{\mathbf{n}}_{j}\right)+h . c . \\ \sum_{j=1}^{K}\left(\mathbf{2 M}, \mathbf{N}_{j} ; \mathbf{n}_{j}\right)+h . c .\end{array}\right.$

Massless spectra for $S O(32)$

Matter is counted by cohomology classes of $U\left(n_{i}\right)$ bundles:

reps.	$H=S O(2 M) \times \prod_{i=1}^{K} S U\left(N_{i}\right) \times U(1)_{i}$
$\left(\mathbf{A d j}_{U\left(N_{i}\right)}\right)_{0(i)}$	$H^{*}\left(K 3, V_{i} \otimes V_{i}^{*}\right)$
$\left.\left(\mathbf{S y m}_{U\left(N_{i}\right.}\right)\right)_{2(i)}$	$H^{*}\left(K 3, \wedge^{2} V_{i}\right)$
$\left(\mathbf{A n t i}_{U\left(N_{i}\right)}\right)_{2(i)}$	$H^{*}\left(K 3, \bigotimes_{s}^{2} V_{i}\right)$
$\left(\mathbf{N}_{i}, \mathbf{N}_{j}\right)_{1(i), 1(j)}$	$H^{*}\left(K 3, V_{i} \otimes V_{j}\right)$
$\left(\mathbf{N}_{i}, \overline{\mathbf{N}}_{j}\right)_{1(i),-1(j)}$	$H^{*}\left(K 3, V_{i} \otimes V_{j}^{*}\right)$
$\left(\mathbf{A d j}_{S O(2 M)}\right)_{0}$	$H^{*}(K 3, \mathcal{O})$
$\left(2 \mathbf{M}, \mathbf{N}_{i}\right)_{1(i)}$	$H^{*}\left(K 3, V_{i}\right)$

- Net chirality is counted by the index $\chi(W)$ of $H^{*}(K 3, W)$ -6D: gauginos and matter fermions have opposite chirality $\Rightarrow \chi(W)_{K 3} \equiv \operatorname{ch}_{2}(W)+2 \operatorname{rank}(W) \sim$ \# Vector - \# Hyper is sufficient to compute massless matter

Field theory anomalies

Anomaly polynomial factorises as $2 \times 6+4 \times 4$: G.H. 0602101

$$
\begin{aligned}
I_{8}^{S O(32)}= & \frac{1}{3}\left(\sum_{i} c_{1}\left(V_{i}\right) \operatorname{tr}_{U\left(N_{i}\right)} F\right) \times\left(\sum_{j} c_{1}\left(V_{j}\right)\left[\operatorname{tr}_{U\left(N_{j}\right)} F \operatorname{tr}^{2}-16 \operatorname{tr}_{U\left(N_{j}\right)} F^{3}\right]\right) \\
& +\left(\operatorname{tr}^{2}+2 \operatorname{tr}_{S O(2 M)} F^{2}+\sum_{i} 4\left(\operatorname{ch}_{2}\left(V_{i}\right)+n_{i}\right) \operatorname{tr}_{U\left(N_{i}\right)} F^{2}\right) \times \\
& \times\left(\operatorname{tr}^{2}-\operatorname{tr}_{S O(2 M)} F^{2}-2 \sum_{i} n_{i} \operatorname{tr}_{U\left(N_{i}\right)} F^{2}\right)
\end{aligned}
$$

Interpretation:

- 2×6 part is related to massive $U(1) \mathrm{s}$
- 4×4 part will be matched with orbifold point

Green-Schwarz mechanism

- Counter terms arise from kinetic and 1-loop terms in $\mathrm{D}=10$:

$$
S_{\text {tree }} \supset \int_{\mathbb{R}^{1,9}} H_{3} \wedge \star_{10} H_{3} \quad S_{1-\text { loop }} \supset \int_{\mathbb{R}^{1}, 9} B \wedge X_{8}
$$

- Combination of dual d.o.f. appearing in tree level and 1-loop terms leads to the correct counter terms

$$
\mathcal{I}_{\text {pert }} \sim \int_{K 3}\left(\operatorname{tr}(F \bar{F}) \wedge X_{\overline{2}+6}+\frac{1}{2}\left(\operatorname{tr} F^{2}-\operatorname{tr} R^{2}\right) \wedge X_{\overline{4}+4}\right)
$$

-First term: scalars and dual 4-forms

- Second term: 2-forms

Massive $U(1) \mathbf{s}$

- U(1)s become massive via couplings to B field:

$$
S_{\text {mass }}=\sum_{k} \int_{\mathbb{R}^{1,5}} c_{k}^{(4)} \wedge[\operatorname{tr}(F \bar{F})]^{k}
$$

with $c_{k}^{(4)}$ dual to $b_{k}^{(0)}=\int_{k^{t h} 2-\text { cycle }} B$
\Rightarrow masses depend on $c_{1}(V) \quad \operatorname{tr}_{S O(32)}(F \bar{F}) \sim \sum_{i} N_{i} c_{1}\left(V_{i}\right) F_{U(1)_{i}}$
\Rightarrow non-trivial mass matrix for several $U(1) \mathrm{s}$

- ${ }_{k}^{(0)}$ belong to neutral hyper multiplets
-Dilaton is scalar d.o.f. in tensor mult. \Rightarrow remains massless

Matching $K 3$ and T^{4} / \mathbb{Z}_{N} : anomalies

G.H. \& M. Trapletti, hep-th/0612030

Comparison of 4×4 parts in anomaly polynomial:

$$
\begin{aligned}
& I_{8}^{S O(32)}=\left(\operatorname{tr}^{2}+2 \operatorname{tr}_{S O(2 M)} F^{2}+\sum_{i} 4\left(\operatorname{ch}_{2}\left(V_{i}\right)+n_{i}\right) \operatorname{tr}_{S U\left(N_{i}\right)} F^{2}\right) \times \\
& \times\left(\operatorname{tr}^{2}-\operatorname{tr}_{S O(2 M)} F^{2}-2 \sum_{i} n_{i} \operatorname{tr}_{S U\left(N_{i}\right)} F^{2}\right)+\cdots \\
& \alpha_{i} \stackrel{!}{=} 2, \quad \beta_{j} \stackrel{!}{=} 4\left(\operatorname{ch}_{2}\left(V_{j}\right)+n_{j}\right), \quad-2 \stackrel{!}{=}-2 n_{j}
\end{aligned}
$$

$\Rightarrow n_{j}=1$ gives line $(U(1))$ bundles
\Rightarrow smooth instanton numbers $\mathrm{ch}_{2}\left(V_{j}\right)$ can be computed from orbifold point coefficients β_{j}

- Orbifold models can contain two $S O\left(2 M_{i}\right)$ factors, smooth models only one
- $\alpha_{i} \neq 2 \Rightarrow$ smooth model contains $S U\left(M_{i}\right)$ instead of $S O\left(2 M_{i}\right)$

Matching spectra

-use T^{4} / \mathbb{Z}_{N} shift vector to determine smooth embedding:
$\frac{1}{N}\left(1_{n_{1}}, 2_{n_{2}}, 3_{n_{3}}, 0_{16-\sum_{i} n_{i}}\right) \rightarrow\left(L \ldots L, L^{2} \ldots L^{2}, L^{3} \ldots L^{3}, 0 \ldots\right)$
\bullet-models independent of signs $\pm 1, \pm 2, \ldots$
\bullet - order N does not enter smooth solution
\Rightarrow smooth non-Abelian gauge group can:

- be identical to group at orbifold point
- have rank reduced by 1
- \# matter reps. must match upon symmetry breaking
-symmetry beaking \& blow-up via vevs of twisted scalars

Ex: $S O(32)$ 'standard embedding'

- Shift vector $V=\frac{1}{N}\left(1,1,0^{14}\right)$ on T^{4} / \mathbb{Z}_{N}
-Gauge group: $S O(28) \times S U(2) \times\left\{\begin{array}{cc}S U(2) & N=2 \\ U(1) & N=3,4,6\end{array}\right.$

N	U	T	T^{2}
2	$(\mathbf{2 8}, \mathbf{2}, \mathbf{2})+4(\mathbf{1})$	$8(\mathbf{2 8}, \mathbf{1}, \mathbf{2})+32(\mathbf{1}, \mathbf{2}, \mathbf{1})$	-
3	$(\mathbf{2 8}, \mathbf{2})_{1}+2(\mathbf{1})_{0}+(1)_{2}$	$9(\mathbf{2 8}, \mathbf{2})_{\frac{1}{3}}+45(\mathbf{1})_{\frac{2}{3}}+18(\mathbf{1})_{\frac{4}{3}}$	-
4	$(\mathbf{2 8}, \mathbf{2})_{1}+2(\mathbf{1})_{0}+(1)_{2}$	$4(\mathbf{2 8}, \mathbf{2})_{\frac{1}{2}}+24(\mathbf{1})_{\frac{1}{2}}+8(\mathbf{1})_{\frac{3}{2}}$	$5(\mathbf{2 8}, \mathbf{2})_{0}+32(\mathbf{1})_{1}$
6	$(\mathbf{2 8}, \mathbf{2})_{1}+2(\mathbf{1})_{0}+(1)_{2}$	$(\mathbf{2 8}, \mathbf{2})_{\frac{2}{3}}+8(\mathbf{1})_{\frac{1}{3}}+2(\mathbf{1})_{\frac{5}{3}}$	$5(\mathbf{2 8}, \mathbf{2})_{\frac{1}{3}}+22(\mathbf{1})_{\frac{2}{3}}+10(1$
			$3(\mathbf{2 8}, \mathbf{2})_{0}+22(\mathbf{1})_{1}$

-Counting of non-Abelian d.o.f.: $10(\mathbf{2 8}, \mathbf{2})+66(\mathbf{1})$:

- $U(1)$ charges in untwisted sector identical
$\bullet U(1)$ charges in $n^{\text {th }}$ twisted sectors: $1+\frac{m}{n}$
$\bullet U(1)(S U(2))$ becomes massive in orbifold blow-up

Ex: $S O(28) \times S U(2) \times U(1)$

Two ways to obtain $S O(28) \times S U(2) \times U(1)_{\text {massive }}$:

- line bundle L in $U(2)$ or
- $L \oplus L^{-1}$ in $U(1) \times U(1)$
$\Rightarrow U(1)_{\text {diag }}$ stays massless \& is enhanced to $S U(2)$
- denote embeddings by (with $\mathrm{ch}_{2}(L)=-12$ for Bianchi identity)

$$
\left(L, L, 0^{14}\right) \quad\left(L, L^{-1}, 0^{14}\right)
$$

- Matter spectrum identical:

$$
10(\mathbf{2 8}, \mathbf{2})_{1}+46(\mathbf{1}, \mathbf{1})_{2} \quad m_{U(1)}^{2} \sim c_{1}(L)^{2}
$$

- adding the 20 neutral hypers on $K 3$ gives agreement with orbifold 'standard embedding' in blow-up
difference: K-theory constraint: $c_{1}\left(W_{\text {total }}\right)=(1 \pm 1) c_{1}(L) \stackrel{!}{\in} H^{2}(K 3,2 \mathbb{Z})$

Blow-up of orbifold singularities

The 6D scalar potential is determined by gauge interactions:

$$
V=\sum_{a, \alpha} D^{a, \alpha} D^{a, \alpha} \quad \text { with } \quad D^{a, \alpha}=\Phi_{i}^{\dagger} \sigma^{a} t_{i j}^{\alpha} \Phi_{j}
$$

containing the hyper multiplets Φ_{j}, Pauli matrices $\sigma_{a=1,2,3}^{a}$ and generators of gauge groups $t_{i j}^{\alpha}{ }^{(} U(1)$ symmetry set $\left.t_{i j}^{\alpha} \equiv 1\right)$

- standard 4D D-term arises from $\sigma^{3}=\operatorname{Diag}(1,-1)$
- Blow-up breaks gauge group via vevs of twisted scalars
- vevs render gauge bosons massive via 6D kinetic terms
- D-flatness: at least 2 fixed points blown-up simultaneously

Discussion

Heterotic orbifolds

- Massless spectra complete for $T^{4} / \mathbb{Z}_{N}, N=2,3,4$ examples for $N=6$
G.H. \& M. Trapletti hep-th/0612030
- Systematics of anomaly polynomial: 4×4 only!

Heterotic $K 3$ compactifications:

- Anomaly cancellation 6D fully understood
- Structure of massive $U(1) \mathrm{s}$: depends on $c_{1}(V)$, non-trivial matrix
Comparison Heterotic on $K 3 \Leftrightarrow T^{4} / \mathbb{Z}_{N}$
- Correspondence $U(1)$ embedding \Leftrightarrow shift vector $(N=2,3)$
- Instanton numbers obtained from anomaly polynomial
- Spectra fit: $N=4,6$ with more line bundles \Leftrightarrow twist sectors
- Blow-up via twisted scalars

Open questions

- List of T^{4} / \mathbb{Z}_{6} spectra not complete
- Matching of remaining $N=4,6$ cases with several line bundles?
- Explicit realisation of line bundles in general case?

Ansatz: democratic distribution among fixed points, toric geometry

- Generalisation to 4D? - see Groot Nibbelink
- Inclusion of Wilson lines? (-5 -branes straightforward)
- Same reasoning for non-Abelian orbifolds?

