Smooth Heterotic Compactifications and anomalous U(1)s

hep-th/0612030 by G.H. and Michele Trapletti

& hep-th/0602101 by G.H.

Gabriele Honecker

Gabriele.Honecker@cern.ch

CERN

Motivation

Different string theory model building strategies:

- Heterotic Abelian orbifolds of $E_8 \times E_8$ since \sim '87 see review talk by Nilles, also Groot Nibbelink, Kyae, Lebedev, Lüdeling, Wingerter
- Heterotic $E_8 \times E_8$ GUTs SO(10) or SU(5) on Calabi-Yaus with SU(4) or SU(5) bundles \sim '99
- D-brane model building with intersecting or magnetised branes in type II orientifolds, Gepner models ... \sim '99 see Gmeiner, Suruliz Intersecting branes have description via cycles at

Intersecting branes have description via cycles at orbifold point and on Calabi-Yau's Magnetic backgrounds are S-dual to heterotic SO(32) compactifications with U(1) backgrounds

Motivation

This talk:

Consider heterotic K3 compactifications to $\mathcal{N}=1$ in 6D and their T^4/\mathbb{Z}_N orbifold limits:

- K3 is unique
- check from ${\rm tr} R^4$, ${\rm tr}_{SU(N)} F^4$, ${\rm tr}_{SO(2M)} F^4$ anomaly cancellation in 6D: the massless spectrum with all singlets is known completely

For simplicity restrict to

perturbative vacua, no 5-branes

Het. T^4/\mathbb{Z}_N orbifolds: consistency

• Geometry: singular K3 limit: T^4/\mathbb{Z}_N with N=2,3,4,6 given by rotation: $\theta:z_k\to e^{2\pi v_k}z_k$ $\vec{v}=\frac{1}{N}(1,-1)$

•Orbifold action is embedded into gauge d.o.f. via shift vector \vec{r} 1

$$\vec{V} = \frac{1}{N}(1, \dots, 1, 2, \dots, 2, \dots, 0, \dots, 0)$$

• Quadratic level matching condition:

$$N\left(\sum_{i} V_i^2 - \sum_{i} v_i^2\right) = 0 \bmod 2$$

• Linear: Spinors in the gauge bundle: $N \sum_i V_i = 0 \mod 2$

Spectra & anomalies

Massless spectra are computed from the weight vectors $\vec{w} = (\pm 1, \pm 1, 0^{14})$ of e.g. SO(32) (E₈ × E₈ discussion identical):

- gauge group: $\vec{w} \cdot \vec{V} \in \mathbb{Z}$, untwisted matter: $\vec{w} \cdot \vec{V} \notin \mathbb{Z}$
- ullet normalise U(1) charges to fit with untwisted sector of smooth case
- n^{th} twisted matter: $\vec{w} n\vec{V}$ twisted ground state
 - count fixed points
 - •identify oscillator states which lift tachyonic vacuum to massless level
- \Rightarrow anomaly polynomial factorises as 4×4 G.H., Trapletti, 0612030
- \Rightarrow absence of 2×6 term indicates that U(1)s are massless at the orbifold point

Anomalies

Anomaly arises via fermion loops (tensors also possible, but *perturbative* contributions cancel among universal tensor and SUGRA part)

- $ullet {
 m tr} R^4$ and ${
 m tr} F^4$ anomalies are pathological absent
- only factorisable anomalies can be cancelled
- on orbifolds: 4×4 factorisation only

T^4/\mathbb{Z}_N anomaly polynomial

G.H. & M. Trapletti, hep-th/0612030

Pert. anomaly polynomial at the orbifold point, e.g. SO(32):

$$\left(\operatorname{tr}R^{2} + \sum_{i} \alpha_{i} \operatorname{tr}_{SO(2M_{i})} F^{2} + \sum_{j} \beta_{j} \operatorname{tr}_{SU(N_{j})} F^{2} + \sum_{k} \gamma_{k} F_{U(1)_{k}}^{2} + \sum_{i < j} \delta_{ij} F_{U(1)_{i}} F_{U(1)_{j}}\right) \times \left(\operatorname{tr}R^{2} - \sum_{i} \operatorname{tr}_{SO(2M_{i})} F^{2} - 2 \sum_{j} \operatorname{tr}_{SU(N_{j})} F^{2} + \sum_{k} \tilde{\gamma}_{k} F_{U(1)_{k}}^{2}\right) = I_{8}^{SO(3)}$$

with

- at most two $SO(2M_i)$ factors
- regular case: $\alpha=2$ and only fundamental reps. of SO(2M) occur
- exceptions: $\alpha \leq 1$ and spinor reps. of SO(2M)
- $\beta \leq 1$

 \Rightarrow Match coefficients with smooth K3 case

Heterotic K3 compactifications

G.H. hep-th/0602101

For both SO(32) and $E_8 \times E_8$ compactifications:

- $\mathcal{N} = 1$ SUSY in 6D $\Leftrightarrow \mathbb{R}^{1,5} \times K3$
- Switch on gauge background bundle along K3 'standard embedding': spin = gauge connection: SU(2) bundle on K3
- Perturbative gauge group is the commutant of the background bundle in $E_8 \times E_8$ or SO(32)
- Massless spectrum determined for given bundle
- No $\operatorname{tr} R^4$, $\operatorname{tr}_{SU(N)} F^4$, $\operatorname{tr}_{SO(2M)} F^4$ anomalies
- Factorisable field theory anomalies need to be cancelled by generalised Green Schwarz (GS) mechanism
- \Rightarrow massive U(1)s occur, geometric moduli frozen

Consistency conditions:

Background gauge bundle V with field strength \overline{F} is SUSY:

- \overline{F} is holomorphic (1,1) and primitive $\int_{K3} J \wedge \mathrm{tr} \overline{F} = 0$: J: Kähler form on K3 $\Rightarrow 2+1$ geometric moduli frozen
- *K*3: 20 neutral hyper multiplets:
 - ●19: 3 geometric + 1 *B*-field modulus
 - •1: K3 volume + B-field triplet SUSY \Rightarrow massive mult. if B also frozen: GS couplings
- Quadratic: Bianchi identity on $H_3 = dB \frac{\alpha'}{4}(\omega_{YM} \omega_L)$: $N\sum_i (V_i^2 v_i^2) = 0 \bmod 2 \Leftrightarrow \qquad \mathrm{tr} \overline{F}^2 \mathrm{tr} \overline{R}^2 = 0$

Massless spectra

Massless spectrum contains:

- $\bullet \mathcal{N} = 1$ SUGRA multiplet
- •20 neutral hyper mults.
- •1 universal tensor mult. (dilaton + truncation of B to 6D)
- •Gauge group & charged hyper mults. $model\ dependent$

Decomposition of the adjoint of SO(32)

 $ightarrow SO(2M) imes \prod_{j=1}^K U(N_j\,n_j)$ leads to the assignment of bundles and matter reps:

$$\mathbf{496} \rightarrow \begin{pmatrix} (\mathbf{Anti}_{SO(2M)}, \mathbf{1}) + \sum_{j=1}^{K} (\mathbf{Adj}_{U(N_j)}; \mathbf{Adj}_{U(n_j)}) \\ \sum_{j=1}^{K} (\mathbf{Anti}_{U(N_j)}; \mathbf{Sym}_{U(n_j)}) + (\mathbf{Sym}_{U(N_j)}; \mathbf{Anti}_{U(n_j)}) + h \\ \sum_{i < j} (\mathbf{N}_i, \mathbf{N}_j; \mathbf{n}_i, \mathbf{n}_j) + (\mathbf{N}_i, \overline{\mathbf{N}}_j; \mathbf{n}_i, \overline{\mathbf{n}}_j) + h.c. \\ \sum_{j=1}^{K} (\mathbf{2M}, \mathbf{N}_j; \mathbf{n}_j) + h.c. \end{pmatrix}$$

Massless spectra for SO(32)

Matter is counted by $cohomology\ classes$ of $U(n_i)$ bundles:

reps.	$H = SO(2M) \times \prod_{i=1}^{K} SU(N_i) \times U(1)_i$	
$(\mathbf{Adj}_{U(N_i)})_{0(i)}$	$H^*(K3, V_i \otimes V_i^*)$	
$(\mathbf{Sym}_{U(N_i)})_{2(i)}$	$H^*(K3, \bigwedge^2 V_i)$	
$(\mathbf{Anti}_{U(N_i)})_{2(i)}$	$H^*(K3, \bigotimes_s^2 V_i)$	
$(\mathbf{N}_i,\mathbf{N}_j)_{1(i),1(j)}$	$H^*(K3, V_i \otimes V_j)$	
$(\mathbf{N}_i,\overline{\mathbf{N}}_j)_{1(i),-1(j)}$	$H^*(K3, V_i \otimes V_j^*)$	
$(\mathbf{Adj}_{SO(2M)})_0$	$H^*(K3, \mathcal{O})$	
$(2\mathbf{M}, \mathbf{N}_i)_{1(i)}$	$H^*(K3, V_i)$	

- Net chirality is counted by the index $\chi(W)$ of $H^*(K3, W)$
- •6D: gauginos and matter fermions have opposite chirality

$$\Rightarrow \chi(W)_{K3} \equiv \operatorname{ch}_2(W) + 2\operatorname{rank}(W) \sim \# \operatorname{Vector} - \# \operatorname{Hyper}$$

is sufficient to compute massless matter

Field theory anomalies

Anomaly polynomial factorises as $2 \times 6 + 4 \times 4$: G.H. 0602101

$$I_8^{SO(32)} = \frac{1}{3} \left(\sum_i c_1(V_i) \operatorname{tr}_{U(N_i)} F \right) \times \left(\sum_j c_1(V_j) \left[\operatorname{tr}_{U(N_j)} F \operatorname{tr} R^2 - 16 \operatorname{tr}_{U(N_j)} F^3 \right] \right)$$

$$+ \left(\operatorname{tr} R^2 + 2 \operatorname{tr}_{SO(2M)} F^2 + \sum_i 4 \left(\operatorname{ch}_2(V_i) + n_i \right) \operatorname{tr}_{U(N_i)} F^2 \right) \times$$

$$\times \left(\operatorname{tr} R^2 - \operatorname{tr}_{SO(2M)} F^2 - 2 \sum_i n_i \operatorname{tr}_{U(N_i)} F^2 \right)$$

Interpretation:

- 2×6 part is related to massive U(1)s
- 4×4 part will be matched with orbifold point

Green-Schwarz mechanism

•Counter terms arise from kinetic and 1-loop terms in D=10:

$$S_{tree} \supset \int_{\mathbb{R}^{1,9}} H_3 \wedge \star_{10} H_3 \qquad S_{1-loop} \supset \int_{\mathbb{R}^{1,9}} B \wedge X_8$$

 Combination of dual d.o.f. appearing in tree level and 1-loop terms leads to the correct counter terms

$$\mathcal{I}_{pert} \sim \int_{K3} \left(\operatorname{tr}(F\overline{F}) \wedge X_{\overline{2}+6} + \frac{1}{2} \left(\operatorname{tr}F^2 - \operatorname{tr}R^2 \right) \wedge X_{\overline{4}+4} \right)$$

•First term: scalars and dual 4-forms

Second term: 2-forms

Massive U(1)s

 $\bullet U(1)$ s become massive via couplings to B field:

$$S_{mass} = \sum_{k} \int_{\mathbb{R}^{1,5}} c_{k}^{(4)} \wedge [\operatorname{tr}(F\overline{F})]^{k}$$

with
$$c_k^{(4)}$$
 dual to $b_k^{(0)} = \int_{k^{th}2-{\rm cycle}} B$

- \Rightarrow masses depend on $c_1(V)$ $\operatorname{tr}_{SO(32)}(F\overline{F}) \sim \sum_i N_i c_1(V_i) F_{U(1)_i}$
- \Rightarrow non-trivial mass matrix for several U(1)s
- $\bullet b_k^{(0)}$ belong to neutral hyper multiplets
- Dilaton is scalar d.o.f. in tensor mult. ⇒remains massless

Matching K3 and T^4/\mathbb{Z}_N : anomalies

G.H. & M. Trapletti, hep-th/0612030

Comparison of 4×4 parts in anomaly polynomial:

$$I_8^{SO(32)} = \left(\operatorname{tr} R^2 + 2\operatorname{tr}_{SO(2M)} F^2 + \sum_i 4\left(\operatorname{ch}_2(V_i) + n_i\right)\operatorname{tr}_{SU(N_i)} F^2\right) \times \left(\operatorname{tr} R^2 - \operatorname{tr}_{SO(2M)} F^2 - 2\sum_i n_i \operatorname{tr}_{SU(N_i)} F^2\right) + \cdots$$

$$\alpha_i \stackrel{!}{=} 2, \quad \beta_j \stackrel{!}{=} 4(\operatorname{ch}_2(V_j) + n_j), \quad -2 \stackrel{!}{=} -2n_j$$

 $\Rightarrow n_j = 1$ gives line (U(1)) bundles

 \Rightarrow smooth instanton numbers $\operatorname{ch}_2(V_j)$ can be computed from orbifold point coefficients β_j

- ullet Orbifold models can contain two $SO(2M_i)$ factors, smooth models only one
- $\bullet \alpha_i \neq 2 \Rightarrow$ smooth model contains $SU(M_i)$ instead of $SO(2M_i)$

Matching spectra

•use T^4/\mathbb{Z}_N shift vector to determine smooth embedding:

$$\frac{1}{N}(1_{n_1}, 2_{n_2}, 3_{n_3}, 0_{16-\sum_i n_i}) \to (L \dots L, L^2 \dots L^2, L^3 \dots L^3, 0 \dots)$$

- •models independent of $signs \pm 1, \pm 2, \dots$
- \bullet order N does not enter smooth solution

 \Rightarrow smooth non-Abelian gauge group can:

- be identical to group at orbifold point
- have rank reduced by 1
- •# matter reps. must match upon symmetry breaking
- symmetry beaking & blow-up via vevs of twisted scalars

Ex: SO(32) 'standard embedding'

•Shift vector
$$V=\frac{1}{N}(1,1,0^{14})$$
 on T^4/\mathbb{Z}_N •Gauge group: $SO(28)\times SU(2)\times \begin{cases} SU(2) & N=2\\ U(1) & N=3,4,6 \end{cases}$

	•				
N	U	T	T^2		
2	(28, 2, 2) + 4(1)	8(28 , 1 , 2) + 32(1 , 2 , 1)	_		
3	$(28,2)_1 + 2(1)_0 + (1)_2$	$9(28,2)_{\frac{1}{3}} + 45(1)_{\frac{2}{3}} + 18(1)_{\frac{4}{3}}$	_		
4	$(28,2)_1 + 2(1)_0 + (1)_2$	$4(28,2)_{\frac{1}{2}} + 24(1)_{\frac{1}{2}} + 8(1)_{\frac{3}{2}}$	$5(28,2)_0 + 32(1)_1$		
6	$(28,2)_1 + 2(1)_0 + (1)_2$	$(28,2)_{\frac{2}{3}} + 8(1)_{\frac{1}{3}} + 2(1)_{\frac{5}{3}}$	$5(28,2)_{\frac{1}{3}} + 22(1)_{\frac{2}{3}} + 10(1)_{\frac{2}{3}}$		
			$3(28,2)_0 + 22(1)_1$		

- •Counting of non-Abelian d.o.f.: 10(28,2) + 66(1):
- $\bullet U(1)$ charges in untwisted sector identical
- $\bullet U(1)$ charges in n^{th} twisted sectors: $1 + \frac{m}{n}$
- $\bullet U(1)$ (SU(2)) becomes massive in orbifold blow-up

Ex:
$$SO(28) \times SU(2) \times U(1)$$

Two ways to obtain $SO(28) \times SU(2) \times U(1)_{massive}$:

- line bundle L in U(2) or
- $L \oplus L^{-1}$ in $U(1) \times U(1)$ $\Rightarrow U(1)_{diag}$ stays massless & is enhanced to SU(2)
- denote embeddings by (with $\mathrm{ch}_2(L) = -12$ for Bianchi identity)

$$(L, L, 0^{14})$$
 $(L, L^{-1}, 0^{14})$

Matter spectrum identical:

$$10(28,2)_1 + 46(1,1)_2$$
 $m_{U(1)}^2 \sim c_1(L)^2$

• adding the 20 neutral hypers on K3 gives agreement with orbifold 'standard embedding' in blow-up

difference: K-theory constraint: $c_1(W_{total}) = (1 \pm 1) c_1(L) \stackrel{!}{\in} H^2(K3, 2\mathbb{Z})$ Karlsruhe, 28 July 2007 – p.18/21

Blow-up of orbifold singularities

The 6D scalar potential is determined by gauge interactions:

$$V = \sum_{a,\alpha} D^{a,\alpha} D^{a,\alpha} \quad \text{with} \quad D^{a,\alpha} = \Phi_i^{\dagger} \sigma^a t_{ij}^{\alpha} \Phi_j$$

containing the hyper multiplets Φ_j , Pauli matrices $\sigma_{a=1,2,3}^a$ and generators of gauge groups t_{ij}^α (U(1) symmetry set $t_{ij}^\alpha\equiv 1$)

- standard 4D D-term arises from $\sigma^3 = \text{Diag}(1, -1)$
- Blow-up breaks gauge group via vevs of twisted scalars
- vevs render gauge bosons massive via 6D kinetic terms
- D-flatness: at least 2 fixed points blown-up simultaneously

Discussion

Heterotic orbifolds

- Massless spectra complete for T^4/\mathbb{Z}_N , N=2,3,4 examples for N=6 G.H. & M. Trapletti hep-th/0612030
- Systematics of anomaly polynomial: 4×4 only!

Heterotic K3 compactifications:

- Anomaly cancellation 6D fully understood
 G.H. '06
- Structure of massive U(1)s: depends on $c_1(V)$, non-trivial matrix

Comparison Heterotic on $K3 \Leftrightarrow T^4/\mathbb{Z}_N$

- Correspondence U(1) embedding \Leftrightarrow shift vector (N=2,3)
- Instanton numbers obtained from anomaly polynomial
- Spectra fit: N = 4,6 with more line bundles \Leftrightarrow twist sectors
- Blow-up via twisted scalars

Open questions

- List of T^4/\mathbb{Z}_6 spectra not complete
- Matching of remaining N=4,6 cases with several line bundles?
- Explicit realisation of line bundles in general case?
 Ansatz: democratic distribution among fixed points, toric geometry
- Generalisation to 4D? see Groot Nibbelink
- Inclusion of Wilson lines? (5-branes straightforward)
- Same reasoning for non-Abelian orbifolds?