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Dimensional Reduction Applied to Non-susy Theories

Philipp Kant a

Institut für Theoretische Teilchenphysik, Universität Karlsruhe

Abstract. We consider regularisation of a Yang-Mills theory by Dimensional Reduction (dred). In
particular, the anomalous dimensions of fermion masses and gauge coupling are computed to four-
loop order. We put special emphasis on the treatment of evanescent couplings which appear when
dred is applied to non-supersymmetric theories. We highlight the importance of distinguishing
between the evanescent and the real couplings. Considering the special case of a Super-Yang-
Mills theory, we find that Dimensional Reduction is sufficient to preserve Supersymmetry in our
calculations.

PACS. 11.10.Gh Renormalisation – 11.30.Pb Supersymmetry

1 Introduction

When calculating higher orders in perturbation theory,
Dimensional Regularisation (dreg) [1,2] is the regu-
larisation procedure of choice. Its convenience stems
from the fact that it automatically preserves gauge in-
variance: the finite part of the effective action satisfies
the Ward identities of the gauge symmetry, without
the need to introduce additional finite local counter-
terms.

When applied to supersymmetric theories, how-
ever, the Ward identities of supersymmetry (susy) are
violated by the use of dreg. That is because invari-
ance of a given action under supersymmetry transfor-
mations only hold for specific values of the space-time
dimension, and dreg alters this value.

Dimensional Reduction (dred)[3] was proposed as
a way of reconciling dreg and susy. The essence of
this method is to restrict the momenta to aD-dimensio-
nal subspace of the 4-dimensional space-time, while
keeping all vector fields 4-dimensional. Thus, the mo-
mentum integrals can be regularised without meddling
with the number of degrees of freedom of the gauge
fields, which is what breaks susy in dreg.

In the present talk, we will discuss the application
of dred to a Yang-Mills Theory with arbitrary gauge
group. In particular, we will outline the calculation of
renormalisation group coefficients in a gauge theory
with fermions, using dred with minimal subtraction,
which is known as the DR scheme. We will empha-
sise on the non-supersymmetric case and the subleties
that arise therein, namely the appearance of evanes-
cent couplings. The calculations have been done up to
the four-loop order.

The correct application of dred to non-supersym-
metric theories is an important issue in phenomeno-
logical studies when one wants to connect parame-
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ters in a supersymmetric theorie valid at high ener-
gies with their counterparts in a non-supersymmetric
low-energy effective theory. A recent example is the
treatment of the running of the strong coupling con-
stant and the bottom mass in the mssm in Ref. [4].

2 Evanescent Couplings

Consider a non-abelian gauge theory with gauge fields
W a

µ and a multiplet of two-component fermions ψA
α (x)

transforming according to a representation R of the
gauge group G.

The bare Lagrangian density, with covariant gauge
fixing and ghost (C,C∗) terms is

LB = −
1

4
G2

µν −
1

2α
(∂µWµ)2 + Ca∗∂µDab

µ C
b

+iψα̇Aσ
µα̇α(Dµ)A

Bψ
B
α (1)

where

Ga
µν = ∂µW

a
ν − ∂νW

a
µ + gfabcW b

µW
c
ν (2)

and
(Dµ)A

B = δA
B∂µ − ig(Ra)A

BW
a
µ . (3)

For the case when the theory admits a gauge invariant
fermion mass term we will have LB → LB +Lm

B , where

Lm
B =

1

2
mABψ

αAψB
α + c.c. (4)

Applying dred amounts to imposing that all field
variables depend only on D out of 4 space-time di-
mensions, where D = 4 − 2ǫ. We can then make the
decomposition

W a
µ (xj) = W a

i (xj) ⊕W a
σ (xj) (5)
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where µ is an index of a 4-dimensional, i and j are
indices of a D-dimensional, and σ is an index of a
2ǫ-dimensional vector space. An explicit construction
of these vector spaces can be found in Ref. [5]. The
Lagrange density then takes the form

LB = Ld
B + Lǫ

B (6)

where

Ld
B = −

1

4
G2

ij−
1

2α
(∂iWi)

2+C∗∂iDiC+iψσiDiψ (7)

and

Lǫ
B =

1

2
(DiWσ)2 − gψσσR

aψW a
σ

−
1

4
g2fabcfadeW b

σW
c
σ′W d

σW
e
σ′ . (8)

Under gauge transformations, the Wσ-fields trans-
form as scalars, and they are commonly called ε-scalars.
Also, each term in Lǫ

B is separately invariant under
gauge transformations, so there is no reason to expect
the form of Eq. (8) to be preserved under renormali-
sation – except in the case of a supersymmetric the-
ory, where invariance under supersymmetry transfor-
mations requires Lǫ

B to take the form of Eq. (8). In
general, the coupling of the ε-scalars to the fermions
will not be governed by the gauge coupling g, but by
a different coupling ge, called an evanescent coupling.

The case of the quartic ε-scalar interaction is even
more complicated. Gauge invariance does not require
the f -f tensor structure, but allows the quartic cou-
pling to take the form

−
1

4

p
∑

r=1

λrH
abcd
r W a

σW
c
σ′W b

σW
d
σ′ (9)

where Habcd are tensors which are non-vanishing when
symmetrised with respect to (ab) and (cd) interchange.
The number p of such tensors which are linearly inde-
pendent depends on the group G and can be up to 4.
For instance, one could choose

2H1 = facef bde + fadef bce ,

2H2 = δabδcd ,

2H3 = δacδbd + δadδbc ,

2H4 = faeff bfgf cghfdhe + faeff bfgfdghf che .(10)

Corresponding to these evanescent couplings, we
define the coupling constants

αDR
s =

g2

4π
, αe =

g2
e

4π
, ηr =

λr

4π
. (11)

3 Relating the DR to the MS scheme

Considering two viable renormalisation schemes, it is
possible to translate calculations done in one scheme
to the other scheme by finite shifts of the renormalised

parameters. In Ref. [6], we derived the relation be-

tween αDR
s and αMS

s at the two-loop level using a
method mentioned in Ref. [7], which relies on the fact
that the value of αs in a physical renormalisation scheme
should not depend on the regularisation procedure:

αph
s =

(

zph,X
s

)2
αX

s , zph,X
s = ZX

s /Z
ph,X
s ,

where X ∈ {MS,DR}

⇒ αDR
s =

(

Zph,DR
s ZMS

s

Zph,MS
s ZDR

s

)2

αMS
s , (12)

where Z
MS/DR
s are the charge renormalisation con-

stants using minimal subtraction in dreg/dred. For

Z
ph,MS/DR
s , on the other hand, we used dreg/dred

combined with a physical renormalisation condition.
The two-loop result of Ref. [6] reads, for the case

of QCD,

αMS
s = αDR

s



1 −
αDR

s

4π
−

5

4

(

αDR
s

π

)2

+
αDR

s αe

12π2
nf



 .

(13)
At the three-loop level, the quartic ε-scalar interaction
starts to contribute. In Ref. [8], the three-loop term in
the conversion relation was calculated for the case of
QCD, and in Ref. [9] it was possible to calculate it for
an arbitrary gauge group.

In addition to the conversion formulae for αs, also
conversion formulae for the quark mass in the MS and
DR scheme have been found in Ref. [6,8,9], using the
same technique.

4 Renormalisation Group Coefficients

The dependence of the coupling constants (11) and the
quark mass on the renormalisation scale µ is given by
their β functions

βDR
s (αDR

s , αe, {ηr}) = µ2 d

dµ2
αDR

s ,

βe(α
DR
s , αe, {ηr}) = µ2 d

dµ2
αe ,

βηr
(αDR

s , αe, {ηr}) = µ2 d

dµ2
ηr ,

γDR
m (αDR

s , αe, {ηr}) = µ2 d

dµ2
m, (14)

which can be calculated if one knows the corresponding
renormalisation constants. For instance,

βDR
s (αDR

s , αe, {ηr}) =

−

(

ǫ
αDR

s

π
+ 2

αDR
s

ZDR
s

∂ZDR
s

∂αe
βe + 2

αDR
s

ZDR
s

∑

r

∂ZDR
s

∂ηr
βηr

)

(

1 + 2
αDR

s

ZDR
s

∂ZDR
s

∂αDR
s

)

−1

. (15)
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However, Eq. (13) and its extension to three loop-
level allows to transfer the gauge and fermion mass β
functions from the MS scheme, where they are known
to the four-loop level [10,11,12,13] to the DR scheme
via

βDR
s = βMS

s

∂αDR
s

∂αMS
s

+ βe
∂αDR

s

∂αe
+
∑

r

βηr

∂αDR
s

∂ηr
,

γDR
m = γMS

m

∂ lnmDR

∂ lnmMS
+
πβMS

s

mDR

∂mDR

∂αMS
s

+
πβe

mDR

∂mDR

∂αe
+
∑

r

πβηr

mDR

∂mDR

∂ηr
. (16)

In Ref. [9], a four-loop result for βDR
s and γDR

m was
derived using Eq. (16). In addition to the MS result,
the following building blocks were needed: since the

dependence of αDR
s and mDR on αe starts at two-

and one-loop order [6], respectively, βe is needed up

to the three-loop level. On the other hand, both αDR
s

and mDR depend on ηr starting from three loops and
consequently only the one-loop term of βηr

enters in
Eq. (16).

It should be noted that the β functions of the evanes-
cent couplings differ from the gauge β function starting
already at the one-loop level. Hence, it is not possible
to identify the evanescent couplings with the gauge
coupling.

5 Super-Yang-Mills Checks

Starting with a Yang-Mills theory, it is possible to
construct a (supersymmetric) Super-Yang-Mills the-
ory by putting the fermions in the adjoint representa-
tion. This is useful for applying checks to the results of
Ref. [6,8,9]: in a supersymmetric theory, the evanes-
cent coupling ge must equal the gauge coupling, so
their β functions should also be the same. We checked
this equality to the three-loop level, which is a strong
check on our calculation and also invalidates an earlier
claim [14] that βs and βe would differ at the three-
loop level in a Super-Yang-Mills theory. In Ref. [14],
the inequality of the β functions was interpreted as an
example of susy breaking by dred.

In Ref. [15], the four-loop gauge β function of a
Super-Yang-Mills theory was presented. This provided
another check to our calculations, and we did find
agreement.

6 Discussion

We demonstrated that Dimensional Reduction is a vi-
able regularisation procedure even in the non-supersym-
metric case and derived explicit conversion formulae
for the gauge coupling and quark mass between the
MS and the DR scheme. We explained the appear-
ance of evanescent couplings and emphasised that they

cannot be identified with the gauge coupling, since the
corresponding β functions differ.

We calculated gauge and fermion mass β functions
for arbitrary gauge theories and applied various checks
in the special case of supersymmetric theories.
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