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StSM
e Stueckelberg extension of SM [Kors and Nath (2004)]

SU(Q)L X U(l)Y X [U(l)X]hidden sector
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o 75 is the matter (both visible and hidden sectors in general)
current that couples to the hidden gauge field C),. More later.

e Without Ux (1), one would end up massive photon! Model would
be highly constrained since from PDG one has

m~ < 6 X 10717 eV



o After EW symmetry breaking by the Higgs mechanism (®) = v/v/2
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e Det(M?) = 0, one massless mode is guaranteed!

e Diagonalize the mass matrix
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e The m%, and m% are given by
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e The orthogonal matrix O is parameterized as
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where sy = sin ¢, cy = cos ¢ etc.
e mz mass is modified! And mz > mz!

e Precision EW data constraints from LEP must be respected!



e The angles are related to the parameters in the Lagrangian Lstsm by

M
5Etangb:—2 : tané’:gycos¢,
My g2
tand = tan @ tan ¢ miy,
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where my = gav/2.

e The Stueckelberg Z’ decouples from the SM when ¢ — 0, since

Mo
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where 0y, is the Weinberg angle.



Matter current Jx:

e If SM fermion carries X charge, one can has
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_ 29X = —— X tan
Qu =5~ L tanoQx(w), Qu=—3 - Lt Qx(d)

However, Qneutron = 0 implies (), + 2()4 = 0 to high precision.
Qx(SM particle) =0 = JM =0
But, for the hiddden sector, one can has

Qx (hidden particle) £ 0 = gpiddensector g
X



e Mixing effects in neutral current of SM fermions )
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e Constraints on StSM.
'Feldman, Liu, and Nath, PRL 97, 021801 (2006)]

e / mass shift requires (myz/M; < 1)

6 =tan¢ = Mo /M| < 0.061 /1 — (mz/M;)?
e Drell-Yan data of Stueckelberg Z’

my > 250 GeV  for 0~ 0.035,
myz > 375 GeV  for 0 ~~0.06.

e /' width is narrow, since Z’ — SM fermions are suppressed by

mixing angles!



[Feldman, Liu, and Nath, PRL 97, 021801 (2006)]
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FIG. 1 (color online). Z’ signal in StSM using the CDF [1] and
DO [2] data. The data put a lower limit of about 250 GeV on M,
for € = 0.035 and 375 GeV for € = 0.06.



Hidden Fermions [K. Cheung and TCY, JHEP03 (2007) 120]
e Add a pair of Dirac fermion y and Yy in the hidden sector

P= 0k
NC
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0 [ KA+ 2+ 2] X

ey = 9xQx(—cose) ,
ey = 9gxQx(sypcs +sosscy), € = gxQx (oo — 50545y)
e Z' couples to y is suppressed. Its width needs to be narrow.

Drell-Yan constraint may be relaxed, if Z' — yx is kinematic allowed.
e Photon couples to x can be milli-charged! (X < e)

e More over, y is stable! In general, all hidden fermions are stable w.r.t.

U(1)x.

e \ is a milli-charged dark matter candidate!



[Davidson, Hannestad and Raffelt, JHEPO5 (2000) 03]
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Figure 1: Regions of mass-charge space ruled out for milli-charged particles. The solid
and dashed lines apply to the model with a paraphoton; solid and dotted lines apply in the
absence of a paraphoton. The bounds arise from the following constraints: AC — acceler-
ator experiments; Op — the Tokyo search for the invisible decay of ortho-positronium [27];
SLAC — the SLAC milli-charged particle search [28]; L. — the Lamb shift; BBN — nu-
cleosynthesis; 2 — () < 1; RG — plasmon decay in red giants; WD — plasmon decay in
white dwarfs; DM — dark matter searches; SN — Supernova 1987A.



Collider Phenomenology
e LEPII constraint (ete™ — Z'v — v + missing energy) is mild.
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e Branching ratios for Z’ with gx = g2, 6 = 0.03 and m, = 60 GeV.

L >y

branching ratio
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¢ CDF Drell-Yan (pp — Z' — eTe™) data provides no constraint.
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e LHC and ILC predictions
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Astrophysical Implication
e \ as milli-charged dark matter candidate.

‘Holdom Phys. Lett. B166, 196 (1986); Goldberg and Hall, Phys.
Lett. B174, 151 (1986) ]

e WMAP-3 constraint
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e Relic density calculation — xX — fsm fsm,¥Z', ZZ' are considered:
thermal average in ov is ignored, and v? ~ 0.1 is used.
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e WMAP constraint = gx ~ g2 and § = tan¢ = Mo /M; ~ O(1072)



e Indirect detection of y

e Monochromatic line from yx — ~v,vZ,~vZ" could be “smoking

gun” signal of dark matter annihilation at Galaxy center.

e Photon flux

AN, 1TeV\“_
~ 12 AMNAQcem 2 st
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with the quantity J(v) defined by

1 1 ’ ,
J(¥) = 3.5 kpe (o.g GeV/cm3> /1n of sight dsp™(r(s, )

e J(7)) depends on the halo profile p of the dark matter




e TeV gamma-rays from Sgr A* (hypothetical super-massive black

hole) near the Galactic center had been observed recently by

CANGAROO, Whipple, HESS.

e These may play the role of continuum background for dark matter

detection. Detectability of photon line above continuum background
at GLAST and HESS [Zaharijas and Hooper, PRD 73 (2006) 103501]

Photon flux > 1.9 x (TeV/m,)* x (107'* = 107") cm ™% s
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Fic. 1.—Broadband spectral energy distribution (SED) of Sgr A*. Radio
data are from Zylka et al. (1995), and the IR data for quiescent state and for
flare are from Genzel et al. (2003). X-ray fluxes measured by Chandra in the
quiescent state and during a flare are from Baganoff et al. (2001, 2003). XMM-
Newton measurements of the X-ray flux in a flaring state is from Porquet et al.
(2003). In the same plot we also show the recent INTEGRAL detection of a
hard X-ray flux; however, because of relatively poor angular resolution, the
relevance of this flux to Sgr A* hard X-ray emission (Bélanger et al. 2004)
is not yet established. The same is true also for the EGRET data (Mayer-
Hasselwander et al. 1998), which do not allow localization of the GeV source
with accuracy better than 1°. The very high energy gamma-ray fluxes are ob-
tained by the CANGAROO (Tsuchiya et al. 2004), Whipple (Kosack et al.
2004), and HESS (Aharonian et al. 2004) groups. Note that the GeV and TeV
gamma-ray fluxes reported from the direction of the Galactic center may orig-
inate in sources different from Sgr A*; therefore, strictly speaking, they should
be considered as upper limits of radiation from Sgr A*. [See the electronic
edition of the Journal for a color version of this figure.]

Aharonian and Neronov, Astrophys. Journal 619, 306 (2005)
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Conclusions

Phenomenology of Stueckelberg Z’ is different from traditional Z’.

Mass limits can be much lower, as low as 200 GeV.
Hidden fermion — milli-charge, viable dark matter candidate.
New invisible decay mode of Z' — xx other than neutrinos.

Hidden fermion annihilation at Galactic center can give rise “smoking
gun”’ signal of monochromatic line that may be probed by next

generation of gamma-ray exps.

Other possible impacts of hidden milli-charged fermions in the context
of Stueckelberg Z' models like CMB, BBN, density fluctuations, direct

detection, etc .... might worthy of further studies.
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