# Standard Model Predictions for Heavy-Flavor Physics

**SUSY 2007** Karlsruhe, July 2007



#### Outline

# Recent progress in standard model predictions:

Muon g-2

b→s+gamma

b→s+leptons

B<sub>s</sub>→muon anti-muon

# Expected experimental progress:

Muon→electron+gamma

Muon-electron conversion

Electron and muon EDM

# Muon g-2

The E821 experiment published final results for  $\mu^+$  and  $\mu^-$  (Phys. Rev. D73 (2006) 072003)



$$a_{\mu}^{\text{exp}} = \frac{g-2}{2} = 116\ 592\ 080\ (63) \cdot 10^{-11}$$

## Loop effects in the lepton sector: muon g-2

Units: 10-11

**QED** 116 584 719 (1)

#### Hadronic

LO **NLO** LBL

6 908 (44) hep-ph/0701163 - 98 (1)

120 (40)



Electroweak

154 (3)

Experiment

116 592 080 (63)

Experiment - SM Theory =  $277 (87) (3.2\sigma \text{ deviation})$ 



+SuSy?

## Harbinger for New Physics?

SUSY is a possible explanation!



$$\Delta a_{\mu}^{\text{SUSY}} \simeq 130 \left( \frac{100 \text{ GeV}}{m_{\text{SUSY}}} \right)^2 \tan \beta$$

## Hadronic vacuum polarization contribution



Ongoing effort to improve low-energy data

Recent compilations: Davier hep-ph/0701163, Jegerlehner hep-ph/0703125

Persisting disagreements:

e+e- vs. tau, in  $2\pi$  and  $4\pi$  channels; is this an experimental issue? new tau data coming from BaBar and Belle

e+e- direct vs. radiative return (shape of spectrum): new data coming from KLOE and BaBar

Good news: agreement between CMD-2 and SND in Novosibirsk.

Eventually BaBar plans to cover the whole low-energy region up to 10 GeV; also new machine at Novosibirsk, VEPP2000.

#### New results from KLOE presented last week at EPS Manchester



#### Stefan E. Müller



#### New results from KLOE presented last week at EPS Manchester

Summary of the small angle results:



Jegerlehner (hep-ph/0703125):

$$\Delta a_{\mu} = a_{\mu}^{\text{exp}} - a_{\mu}^{\text{the}} = (28.7 \pm 9.1) \cdot 10^{-10}$$

Using new KLOE result would increase difference from  $3.2\sigma$  to  $3.4\sigma$ 

b→s+gamma

#### Effective theory



#### QCD effects:

~ triple the rate; and introduce uncertainty in the SM prediction

## QCD effects

### NLO completed 2002 NNLO: international collaboration, first estimate:

PRL 98, 022002 (2007)

PHYSICAL REVIEW

week ending 12 JANUARY 2007

#### Estimate of $\mathcal{B}(\bar{B} \to X_s \gamma)$ at $O(\alpha_s^2)$

M. Misiak, 1,2 H. M. Asatrian, K. Bieri, M. Czakon, A. Czarnecki, T. Ewerth, A. Ferroglia, P. Gambino, 8 M. Gorbahn, C. Greub, U. Haisch, A. Hovhannisyan, T. Hurth, A. Mitov, V. Poghosyan, M. Ślusarczyk,6 and M. Steinhauser9

$$BR(\overline{B} \to X_s \gamma; E_{\gamma} > 1.6 \,\text{GeV}) \quad [10^{-4}]$$

Experiment Theory

3.12(41) 2002

3.57(30)

**NLO** hep-ph/0207131

3.55(26)

3.15(23) NNLO

hep-ph/0609232

## Theoretical challenges

#### Very involved perturbative calculations



Extrapolation in charm mass:

Misiak & Steinhauser (2006)

m<sub>c</sub> dependence:

Boughezal, Czakon, Schutzmeier (2007)

Four-loop anomalous dimensions Czakon, Haisch, Misiak (2006)



## More theoretical challenges

Experiments sensitive to energetic photons only  $\rightarrow$  operator product expansion breaks down; sensitivity to rather low scales.

Neubert (2005) Becher & Neubert (2006)

Non-perturbative effects, e.g.



Lee, Neubert, Paz (2006)

→ main theoretical uncertainty, ~5%

#### b→ s I+ I-

Richer structure: also chirality-conserving

Different structure of logarithms: NNLO prediction already known

(Bobeth, Gambino, Gorbahn, Haisch; Huber, Lunghi, Misiak, Wyler)

Non-zero q<sup>2</sup>: challenging non-perturbative effects

Two interesting regions: small  $q^2$  (<6 GeV<sup>2</sup>) large  $q^2$  (>14 GeV<sup>2</sup>)

Recent study by Ligeti & Tackmann: normalize to  $B \rightarrow X_u lv$ 

## $B_s \rightarrow \mu^+ \mu^-$

Similar short-distance physics as in  $B \rightarrow X_s \mu^t \mu^r$ , but only chirality-changing; Very different hadronic mechanism: pure spectator effect.





Depends on the meson wave function. Related to  $B_s$  mixing!

# $B_s \rightarrow \mu^+ \mu^- vs. B_s$ -anti- $B_s$ mixing





measured, 17.8±0.1/ps

The two processes can be related with only a small hadronic uncertainty (Buras 2003). SM prediction:

$$BR(B_s \to \mu^+ \mu^-) = 3.4(4) \cdot 10^{-9}$$

Present experimental bound:

$$BR(B_s \to \mu^+ \mu^-) < 7.5 \cdot 10^{-8}$$
 D0 (2007)  
90% Similarly CDF

# Coming up at the low-energy frontier...

...before or besides the LHC:

Muon → electron+gamma
Muon-electron conversion?
Muon EDM? (Note: exciting prospects in electron EDM)

### What does the muon g-2 tell us about new physics?

## Possibly large EDM:

$$a_{\mu}^{\text{NP}} \frac{e}{2m} \overline{\mu} \sigma \cdot F \mu \rightarrow d^{\text{CP}} \frac{e}{2m} \overline{\mu} \gamma_5 \sigma \cdot F \mu$$

$$a_{\mu}^{\text{NP}} \sim 10^{-9} \rightarrow d^{\text{CP}} \frac{e}{2m} \sim a_{\mu}^{\text{NP}} \frac{e}{2m} \sim 10^{-9} e \cdot \text{fm} = 10^{-22} e \cdot \text{cm}$$

Similar encouragement for lepton flavor violation:

$$a_{\mu}^{NP} \frac{e}{2m} \overline{\mu} \sigma \cdot F \mu \rightarrow \frac{e}{2m} \overline{e} \left( f_{M} + f_{E} \gamma_{5} \right) \sigma \cdot F \mu$$
$$f_{M,E} \sim a_{\mu}^{NP} \cdot \delta$$
$$BR(\mu \to e \gamma) \sim 10^{-3} \delta^{2}$$

# Muon decay to an electron and photon $\mu \to e \gamma$

Present bound (MEGA @ Los Alamos):  $BR(\mu \rightarrow e\gamma) < 10^{-11}$ 

Planned sensitivity (MEG @ Paul Scherrer Institute)



$$(1-2)\times10^{-13}$$

Note: unusual QED suppression  $\sim$ 15% (large log of the new physics scale  $\Lambda$ )

$$\Gamma(\mu\!\to\!e\gamma)\!\simeq\!\!\left(1\!-\!\frac{8\,\alpha}{\pi}\!\ln\!\!\frac{\Lambda}{m_\mu}\!\right)\!\Gamma^{(0)}(\mu\!\to\!e\gamma)$$



### Status of the MEG experiment

#### **Liquid Xenon Gamma-Ray Detector:**

The cryostat now ready and the photo tubes are being installed to start up operation toward the end of August

#### **Timing Counters:**

Final assembly in Italy; Installation planned at the end of August



#### **Drift Chambers:**

Ready and currently being installed at the beam line; cosmic ray test soon



Engineering run in October 2007!

Toshinori Mori

#### Muon-electron conversion

"The best rare process" No accidental bkgd (single monochromatic e<sup>-</sup>); 10<sup>-17</sup> sensitivity envisioned





#### Variety of mechanisms:



## Proposal for a muon EDM measurement at PSI



 $d_u < 5 \times 10^{-23}$  e cm



# Upcoming progress in electron EDM



## Summary

Clear discrepancy in g-2: ~  $3\sigma$ 

In b  $\rightarrow$  s+gamma, SM@NNLO also falls short of measurement, less significant ~  $1\sigma$ 

New theoretical ideas in  $B_s \rightarrow \text{muons}$ ,  $b \rightarrow \text{sl}^+\text{l}^-$ 

New measurements of electron EDM,  $\mu \rightarrow e\gamma$  soon. Case for muon EDM measurement.