Large $tan\beta$ effects in flavour physics

<u>C</u>

Gino Isidori

Istituto Nazionale di Fisica Nucleare

Laboratori Nazionali di Frascati

- ▶ Introduction: the SUSY flavour problem & the MFV hypothesis
- MFV at large tanβ: general considerations
- Large tanβ effects in B (and K) physics
- Lepton Flavour violation and LF non-universality at large tanβ
- Conclusions

The SUSY flavour problem & the MFV hypothesis

The flavour structure of the SM is quite constrained:

- a <u>large global symmetry</u> in the gauge sector $U(3)^5 = SU(3)_O \times SU(3)_U \times SU(3)_D \times ...$
- broken only by the Yukawa couplings $Y_D \sim \overline{3}_O \times 3_D \quad Y_U \sim \overline{3}_O \times 3_U \quad (Y_E \sim \overline{3}_L \times 3_E)$

This specific <u>symmetry</u> + <u>symmetry-breaking</u> pattern is responsible for the suppression of FCNCs, the suppression of CPV, etc...

The ugly (but highly successful...) part of the SM

The SUSY flavour problem & the MFV hypothesis

The flavour structure of the SM is quite constrained:

- a <u>large global symmetry</u> in the gauge sector $U(3)^5 = SU(3)_O \times SU(3)_U \times SU(3)_D \times ...$
- broken only by the Yukawa couplings $Y_D \sim \overline{3}_O \times 3_D \quad Y_U \sim \overline{3}_O \times 3_U \quad (Y_E \sim \overline{3}_L \times 3_E)$

In principle, the soft breaking terms of the MSSM allow a much reacher symmetry-breaking structure:

$$\mathcal{L}_{soft} \subset (M^2)_{ij} \, \phi_i \, \phi_j + A_{ijk} \, \phi_i \phi_i \phi_k$$
New flavour-breaking terms not necessarily related to the Yukawa couplings

In practice, the absence of deviations form the SM in rare processes implies *severe constraints* on flavour-symmetry breaking terms beyond the SM Yukawas (at last in the quark sector...)

E.g.: Constraints on $(\delta^{D}_{13})_{LL}$ from B_{d} -meson mixing [L. Silvestrini @ CKM 2006]

In practice, the absence of deviations form the SM in rare processes implies *severe constraints* on flavour-symmetry breaking terms beyond the SM Yukawas (at last in the quark sector...)

E.g.: Constraints on $(\delta^{D}_{13})_{LL}$ from B_{d} -meson mixing [L. Silvestrini @ CKM 2006]

$$(\delta^{D}_{13})_{LL} = \frac{(M^{D}_{13})^{2}_{LL}}{\langle M^{D}_{11} \rangle \langle M^{D}_{33} \rangle}$$

Similar (even more stringent) bounds are obtained also on many other δ 's – taking into account $\epsilon_{\rm K}, \Delta {\rm m}_{\rm K}, K \rightarrow \pi \nu \nu, B \rightarrow X \gamma,$ $B \rightarrow X l^+ l^-, B \rightarrow \mu \mu, \Delta {\rm m}_{\rm Bs},...$

The most pessimistic (but also most natural) way out to this problem is the so-called Minimal Flavour Violation [MFV] hypothesis: the Yukawa couplings are the only irreducible sources of flavour symmetry breaking

General principle (symmetry + symmetry-breaking structure) which can be formulated for any (TeV-scale) SM extension:

Within the MSSM, the MFV hypothesis implies a strong restriction on the favourstructure of the soft breaking terms:

E.g.:
$$M_Q^2 \tilde{Q}_L^+ \tilde{Q}_L$$
 \longrightarrow $M_Q^2 \propto \sum a_n (Y_U Y_U^+)^n \sim a_0 I + a_1 Y_U Y_U^+$

- More general than universality $[M_Q^2 \propto I]$
- RGE invariant structure [with the a_n linked together by RGE]
- Perfectly compatible with persent data without fine-tuning on the a_n

$$(\delta^{\mathrm{D}}_{\mathrm{ij}})_{\mathrm{LL}} \propto y_t^2 (V_{\mathrm{CKM}})_{3\mathrm{i}}^* (V_{\mathrm{CKM}})_{3\mathrm{j}} \blacktriangleleft$$

Within the MSSM, the MFV hypothesis implies a strong restriction on the favourstructure of the soft breaking terms:

E.g.:
$$M_Q^2 \tilde{Q}_L^+ \tilde{Q}_L$$
 \longrightarrow $M_Q^2 \propto \sum a_n (Y_U Y_U^+)^n \sim a_0 I + a_1 Y_U Y_U^+$

- More general than universality $[M_O^2 \propto I]$
- RGE invariant structure [with the a_n linked together by RGE]
- Perfectly compatible with persent data without fine-tuning on the a_n

$$(\delta^{\rm D}_{ij})_{\rm LL} \propto y_t^2 (V_{\rm CKM})_{3i}^* (V_{\rm CKM})_{3i}$$

- ⇒ Same CKM factors as in SM: only the flavour–independent magnitude of FCNC amplitudes can be modified [$A(b\rightarrow s\gamma) \propto V_{tb}V_{ts}$, $\Delta M_{Bd} \propto (V_{tb}V_{td})^2$,...]
- ⇒ very *efficient* suppression of NP effects in flavour physics, especially in the standard CKM fits...

Minimal Flavour Violation at large tanβ: general considerations

...however, with two Higgs doublets and a large ratio of vevs, interesting effects in rare decays can occur also under the pessimistic MFV hypothesis

Minimal Flavour Violation at large tanβ: general considerations

...however, with two Higgs doublets and a large ratio of vevs, interesting effects in rare decays can occur also under the pessimistic MFV hypothesis

$$\mathcal{L}_{\text{q-Yukawa}} = \overline{Q}_L Y_D D_R H_D + \overline{Q}_L Y_U U_R H_U + \text{h.c.}$$

 $Y_D \& Y_U$ are still the only irreducible breaking sources of $SU(3)_{Q_L} \times SU(3)_{U_R} \times SU(3)_{D_R}$

negligible non-standard effects in the standard CKM fits

$$Y_D = \operatorname{diag}(y_d, y_s, y_b)$$
 $Y_U = (V_{ckm})^+ \times \operatorname{diag}(y_u, y_c, y_t)$

Minimal Flavour Violation at large tanβ: general considerations

...however, with two Higgs doublets and a large ratio of vevs, interesting effects in rare decays can occur also under the pessimistic MFV hypothesis

$$\mathcal{L}_{\text{q-Yukawa}} = \overline{Q}_L Y_D D_R H_D + \overline{Q}_L Y_U U_R H_U + \text{h.c.}$$

 $Y_D \& Y_U$ are still the only irreducible breaking sources of $SU(3)_{Q_L} \times SU(3)_{U_R} \times SU(3)_{D_R}$

negligible non-standard effects in the standard CKM fits

$$Y_D = \operatorname{diag}(y_d, y_s, y_b)$$
 $Y_U = (V_{ckm})^+ \times \operatorname{diag}(y_u, y_c, y_t)$

$$\mathbf{y_u} = \mathbf{m_u} / \langle H_U \rangle$$
 $\mathbf{y_d} = \mathbf{m_d} / \langle H_D \rangle = \tan\beta \mathbf{m_d} / \langle H_U \rangle$

sizable phenomenological consequences in <u>helicity-supressed</u> processes if $\tan \beta \gg 1$

<u> Motivations</u>

Large $tan\beta$ values are motivated by interesting theoretical considerations:

• $\tan \beta \sim 40-50$ allows the unification of top & bottom Yukawa couplings [\Rightarrow SO(10) GUTs] wide literature

• $\tan\beta \gg 1$ is a natural prediction of the Minimal Gauge-Mediated SUSY-breaking scenario [$\langle H_D \rangle = 0$ at the tree level], which also provide a natural dynamical motivation for MFV

Dine, Nir, Shirman '96 Rattazzi, Sarid '97

Hisano, Shimizu '07

It's not a scenario ad hoc for flavour physics!

<u>Motivations</u>

Large $tan\beta$ values are motivated by interesting theoretical considerations

+

Intriguing phenomenological observations:

• Natural explanation of the $\sim 3\sigma$ discrepancy in the anomalous magnetic moment of the muon:

$$\Delta a_{\mu}^{\text{ exp}} = a_{\mu}^{\text{ exp}} - a_{\mu}^{\text{ SM}} = (29 \pm 9)10^{-10} \quad (\sim 2 \times a_{\mu}^{\text{ ew-SM}}) \quad \text{Hertzog et al. '07}$$

$$\Delta a_{\mu}^{\text{ SUSY}} \sim \tan \beta \times (m_{W}/M_{SUSY})^{2} \times (a_{\mu}^{\text{ ew-SM}}) \times \text{sgn}(\mu)$$

<u>Motivations</u>

Large $tan\beta$ values are motivated by interesting theoretical considerations

 $M_0 \; [{
m GeV}]$

+

Intriguing phenomenological observations:

• Natural explanation of the $\sim 3\sigma$ discrepancy in the anomalous magnetic moment of the muon

 Good consistency with e.w. & darkmatter constraints even in constrained scenarios

→ CMSSM [Buchmuller *et al.* '07]

→ NUHM: large tan β allowed even with (relatively) light M_H [Ellis, Heinemeyer, Olive, Weiglein '07]

MSSM vs. Two-Higgs doublet models

Warning: the *effective* Yukawa interaction of the MSSM can be very different with respect to the non-superymmetric Two-Higgs Doublet Model of type-II, even in the limit of light Higgses & heavy squarks

$$\mathcal{L}_{\text{tree}} = \bar{Q}_L Y_D D_R H_D + \bar{Q}_L Y_U U_R H_U$$

invariant under $U(1)_{PO}$...

MSSM vs. Two-Higgs doublet models

Warning: the *effective* Yukawa interaction of the MSSM can be very different with respect to the non-superymmetric Two-Higgs Doublet Model of type-II, even in the limit of light Higgses & heavy squarks

induced by the **µ** term

Even if $\epsilon_i \sim (16\pi^2)^{-1}$ these (non-holomorphic) terms are a potential large destabilization of the tree-level Yukawa strucutre:

- $\epsilon_{\rm i} \times \tan \beta \sim 1$
- dim-4 ops. \Rightarrow non-decoupling effects

Hall, Rattazzi, Sarid, '94 Blazek, Raby, Pokorski, '95

MSSM vs. Two-Higgs doublet models

Warning: the *effective* Yukawa interaction of the MSSM can be very different with respect to the non-superymmetric Two-Higgs Doublet Model of type-II, even in the limit of light Higgses & heavy squarks

$$\mathcal{L}_{\text{eff}} = \overline{Q}_{L} (Y_{D}) D_{R} H_{D} + \overline{Q}_{L} Y_{U} U_{R} H_{U} + \epsilon_{1} \overline{Q}_{L} (Y_{U} Y_{U}^{+} Y_{D}) D_{R} (H_{U})_{c} + \dots$$

⇒ non-decoupling effects, inlcude Higgs-mediated FCNC's

A complete re-diagonalization of all the effective dim-four Yukawa terms is necessary in order to re-sum the large $\epsilon_i \times \tan\beta$ terms beyond ordinary perturbation theory [correct identification of the ground state]

Babu & Kolda '00; G.I. & Retico '02; Dedes & Pilaftsis '03,...

No further large quantum corrections if

- \bullet $\widetilde{M}_{O} \gg M_{A} \gg m_{W}$
- $\tan \beta$ defined as $\langle H_U \rangle / \langle H_D \rangle$

Alternative hierarchies and/or different $tan\beta$ definitions can be more problematic

Freitar, Gasser, Haisch, '07

⇒ talk by S.Trine in the Flavour Session

Three most interesting sets of observables:

Three most interesting sets of observables:

Simplest M_H & tanβ dependence [mild dependence on other parameters]

$$BR = BR_{SM} \times \left(1 - \frac{m_P^2 \tan \beta^2}{M_H^2 (1 + \epsilon_0 \tan \beta)}\right)^2$$

G. Hou, '93; Ackeroid, Recksiegel, '03 G.I. Paradisi '06

- O(100%)–O(10%) in B $^{\pm} \rightarrow l^{\pm} \nu$ [most likely BR_{SUSY} < BR_{SM}]
- O(1%)-O(0.1%) in K $^{\pm} \rightarrow l^{\pm} \nu$ [necessarily BR_{SUSY} < BR_{SM}]

$$B(B \to \tau \nu) = (1.43 \pm 0.43) \times 10^{-4}$$

 $[B_{SM} \approx 1.2 \times 10^{-4}]$

[Babar+Belle '07]

 $B(K \to \mu \nu(\gamma)) = (63.66 \pm 0.17)\%$ [KLOE]

- + $f_{\rm K}/f_{\pi}$ @ 0.7% [MILC/UKQCD '07]
- + V_{us} @ 0.5% [KLOE/NA48/KTeV + Theory]

Improving the measure of $B(B \rightarrow l \nu)$ provide very valuable infos on M_H & tan β !

Three most interesting sets of observables:

Crucial dependence on μ and A_U [in addition to M_H & tan β]

$$A(B\rightarrow ll)_{H} \sim \frac{m_b m_l}{M_A^2} \frac{\mu A_U}{\tilde{M}_a^2} \tan^3 \beta$$

Possible large enhancement over the SM but size (and magnitude) of the effect can change substantially in different SUSY-breaking scenarios

$$B(B_s \to \mu\mu) < 5.8 \times 10^{-8} (95\%CL)$$

$$[B_{SM} \sim 3 \times 10^{-9}]$$

non-official CDF+D0 combined limit [EPS '07]

Significant constraint but a good fraction of the parameter sapce is still allowed

Lunghi, Porod, Vives '06

$$B(B_s \to \mu\mu) < 5.8 \times 10^{-8} (95\%CL)$$

$$[B_{SM} \sim 3 \times 10^{-9}]$$

non-official CDF+D0 combined limit [EPS '07]

Significant constraint but a good fraction of the parameter sapce is still allowed

Lunghi, Porod, Vives '06

importantant phenomenological implication:

negligible double-Higgs peunguin effect [Buras et al. '01] in ΔM_{Bs}

Three most interesting sets of observables:

Three most interesting sets of observables:

Most complicated observable with several, naturally competitive, contributions:

- positive
- decreasing with tanβ
- $sign \sim sgn(\mu, A)$
- increasing with tanβ

Three most interesting sets of observables:

Most complicated observable with several, naturally competitive, contributions:

One of the most significant constraint of the MSSM:

$$B(B \to X_s \gamma)^{exp} = (3.55 \pm 0.26) \times 10^{-4}$$
 [HFAG '06]

- positive
- decreasing with tanβ
- $sign \sim sgn(\mu, A)$
- increasing with tanβ

$$B(B \to X_s \gamma)^{SM} = (3.15 \pm 0.23) \times 10^{-4}$$

[Misiak et al. '06]

- E.g.: combined low-energy constraints
 - + dark matter (A-funnel region)
 - + heavy squarks

$$\begin{split} M_{sq} &= 1.5 \text{ TeV} \quad M_{sl} = 0.5 \text{ TeV} \\ A_u &= -1.0 \text{ TeV} \quad \mu = \ 0.5 \text{ TeV} \end{split}$$

G.I., Mescia, Paradisi, Temes, '07

Lepton Flavour violation and LF non-universality at large taneta

Large $\tan\beta$ values naturally enhance various LFV rates [e.g. $\Gamma(\mu \to e\gamma) \sim \tan\beta^2$,...], but interesting phenomena can show up also in the quark sector under specific circumstances:

If the model has sizable non-MFV sources of breaking in the lepton sector (non-minimal LFV) \Rightarrow possible visible violations of LF universality in $B(K) \rightarrow lv$

Lepton Flavour violation and LF non-universality at large taneta

Large $\tan\beta$ values naturally enhance various LFV rates [e.g. $\Gamma(\mu \to e\gamma) \sim \tan\beta^2$,...], but interesting phenomena can show up also in the quark sector under specific circumstances:

If the model has sizable non-MFV sources of breaking in the lepton sector (non-minimal LFV) \Rightarrow possible visible violations of LF universality in $B(K) \rightarrow lv$

$$\Gamma(B \to \mu \nu)^{\text{exp}} = \Gamma(B \to \mu \nu_{\mu}) + \Gamma(B \to \mu \nu_{e}) + \Gamma(B \to \mu \nu_{\tau})$$

$$SM \qquad 0 \qquad \text{scalar LFV}$$

sizable one-loop eff. coupl. because of 3rd generation & large mixing in the lepton sector

Masiero, Paradisi, Petronzio, '05

Lepton Flavour violation and LF non-universality at large tan $oldsymbol{eta}$

$$\Gamma(B \to \mu \nu)^{\rm exp} = \Gamma(B \to \mu \nu_{\mu}) + \Gamma(B \to \mu \nu_{e}) + \Gamma(B \to \mu \nu_{\tau})$$
 SM 0 scalar LFV amplitude b_R H⁺. Possible probe of this effect in the ratios:

Interesting correlation with the same phenomenon in the Kaon system, which so far set the best upper limit:

$$R^{K}_{\mu e} = \frac{\Gamma(K^{+} \to \mu^{+} \nu)}{\Gamma(K^{+} \to e^{+} \nu)} \longrightarrow \frac{\text{up to } 1\% \text{ diff.}}{\text{from SM}}$$

<u>Conclusions</u>

The MSSM with MFV + large $tan\beta$ is a quite interesting scenario:

- well motivated (not ad hoc for flavour physics)
- consistent with present data (no more fine-tuned than other MSSM scenarios)
- predictive, with enhanced correlations between low- and high-energy data which could possibly be falsified/verified in the (near ?) future

Key role played by future improvements on the helicity-suppressed modes $B(K) \rightarrow lv$, $B \rightarrow ll$, and $\mu \rightarrow e\gamma$

► <u>Backup</u>

≥ <u>Backup</u>

$$\Delta_{13} \sim (\alpha/4\pi) (\delta_{RR})_{13}$$