Gravitino Production in Early Universe

Motoi ENDO (DESY)

In collaboration with K.Hamaguchi, M.Kawasaki, F.Takahashi, T.Yanagida

30.07.07, SUSY07, Karsluhe

This Talk

- Gravitinos are produced from scalar, i.e. inflaton, decay via gravitational effects.
- Direct and perturb. different from thermal/preheating production.
- This talk clarifies underlying physics.
 - How generic it is?
 - How significant (for cosmology)?

(talk by Takahashi for inflation models)

Gravitino: overview

- R-parity odd
- Massive below SUSY breaking scale
- Absorb goldstino (fermion of \$U\$Y field)
- Decay is Plancksuppressed

SUGRA = global SUSY + gravity

SM	SUSY
B,W,g	$\widetilde{B},\widetilde{W},\widetilde{g}$
ℓ, e, q, d, u	$ ilde{\ell}, ilde{e}, ilde{q}, ilde{d}, ilde{u}$
H_u, H_d	$ ilde{H}_u, ilde{H}_d$
graviton	gravitino

Gravitino Spoils SBBN

 BBN is spoiled by unstable gravitino

Abundance Bounded

- BBN is spoiled by unstable gravitino
- Overclose universe by stable LSP
- Initial gravitino abundance to be constrained

$$m_X Y_X \lesssim 4.4 \times 10^{-10} \text{GeV}$$

Abundance Bounded

- BBN is spoiled by unstable gravitino
- Overclose universe by stable LSP
- Initial gravitino abundance to be constrained

74% Dark Energy

22% Dark
Matter

4% Atoms

Production?

$$m_X Y_X \lesssim 4.4 \times 10^{-10} \text{GeV}$$

Thermal Production

- Thermal scattering of SM/SUSY particles
- Increase as T_R /

$$Y_{3/2}^{(th)} \sim 10^{-12} \left(\frac{T_R}{10^{10} {
m GeV}} \right)$$
 up to corrections

Thermal Production

- Thermal scattering of SM/SUSY particles
- Increase as T_R /

ex.
$$g+g \rightarrow \tilde{g}+\psi_{3/2}$$

cf. BBN bound

$$Y_{3/2} \lesssim 10^{-(15-16)}$$

for gravity-mediation

$$Y_{3/2}^{(th)} \sim 10^{-12} \left(\frac{T_R}{10^{10} \text{GeV}} \right)$$

up to corrections

Thermal Production

- Thermal scattering of SM/SUSY particles
- Increase as T_R \nearrow
- Total decay rate of inflaton should be suppressed.

$$c \sim 1/M_P$$

Gravity effects should affect reheating

ex.
$$g + g \rightarrow \tilde{g} + \psi_{3/2}$$

cf. BBN bound

$$Y_{3/2} \lesssim 10^{-(15-16)}$$

for gravity-mediation

$$Y_{3/2}^{(th)} \sim 10^{-12} \left(\frac{T_R}{10^{10} \text{GeV}} \right)$$

up to corrections

Gravitational Interaction

- We discuss inflaton decay in SUGRA
- Universal
 - SUSY breaking sector as well as inflaton inevitably couples to gravity.
- Less depend on details of model
 - Generic interaction rate

Gravity-Induced Inflaton Decay

Gravity-Induced Inflaton Decay

Gravity-Induced Inflaton Decay

SUSY broken

z decays into pair of gravitino

$$Z \to 2\psi_{3/2}$$

[ME, Hamaguchi, Takahashi; Kawasaki, Takahashi, Yanagida]

[ME, Hamaguchi, Takahashi; Kawasaki, Takahashi, Yanagida]

[ME, Hamaguchi, Takahashi; Kawasaki, Takahashi, Yanagida]

$m_{\phi} > \Lambda_{\mathrm{SUSY}}$

- Previous channel is suppressed
 - SUSY is restored no conformal/R breaking
 - cancellation works even if SUSY is broken

$m_{\phi} > \Lambda_{\mathrm{SUSY}}$

- Previous channel is suppressed
 - SUSY is restored no conformal/R breaking
 - cancellation works even if SUSY is broken
- Disaster of elementally-singlet Z
 - Polonyi problem
 - large gravitino production by $\delta K \sim |\phi|^2 zz^2$

$m_{\phi} > \Lambda_{\mathrm{SUSY}}$

- Previous channel is suppressed
 - SUSY is restored no conformal/R breaking
 - cancellation works even if SUSY is broken
- Disaster of elementally-singlet Z
 - Polonyi problem
 - large gravitino production by $\delta K \sim |\phi|^2 zz^2$
- Assign gauge charge for Z (e.g. in DSB)

 Conformal-/R-symmetries are anomalous at quantum level (c.f. AMSB)

 Conformal-/R-symmetries are anomalous at quantum level (c.f. AMSB)

 Conformal-/R-symmetries are anomalous at quantum level (c.f. AMSB)

Production Rate

- Gravitinos are produced as long as $\langle \phi \rangle \neq 0$
- ullet Direct pair gravitino for $m_\phi < \Lambda_{
 m SUSY}$

$$\Gamma \simeq rac{1}{32\pi} \left(rac{\langle \phi \rangle}{M_P}
ight)^2 rac{m_\phi^3}{M_P^2}$$

ullet Anomaly-induced decay for $m_\phi > \Lambda_{
m SUSY}$

$$\Gamma \sim \frac{\alpha^2}{256\pi^3} \left(\frac{\langle \phi \rangle}{M_P}\right)^2 \frac{m_\phi^3}{M_P^2}$$

[ME in collaboration w/. Hamaguchi, Kawasaki, Takahashi, Yanagida]

Production Rate

- Gravitinos are produced as long as $\langle \phi \rangle \neq 0$
- Direct pair gravitino for $m_\phi < \Lambda_{
 m SUSY}$

$$\Gamma \simeq rac{1}{32\pi} \left(rac{\langle \phi \rangle}{M_P}
ight)^2 rac{m_\phi^3}{M_P^2}$$

ullet Anomaly-induced decay for $m_\phi > \Lambda_{
m SUSY}$

$$\Gamma \sim \frac{\alpha^2}{256\pi^3} \left(\frac{\langle \phi \rangle}{M_P}\right)^2 \frac{m_\phi^3}{M_P^2} \qquad \text{GENERIC}$$

[ME in collaboration w/. Hamaguchi,Kawasaki,Takahashi,Yanagida]

Gravitino Produced

Gravitino Produced

Inflation Models

Moduli Decay

- mass of scalar is light
 - $\overline{-} Y_{3/2} \, \underline{\mathsf{REDUCED}}$
- VEV is at Planck scale
 - $Y_{3/2}$ INCREASES
- Very low reheating temperature
 - $-Y_{3/2}$ INCREASES
- Problem becomes much <u>WORSE</u>

Moduli Decay

- mass of scalar is light
 - $-Y_{3/2}$ REDUCED
- VEV is at Planck scale
 - Gravitino production is serious
- Very low reheating temperature
 - $-Y_{3/2}$ INCREASES
- Problem becomes much <u>WORSE</u>

Natural Reheating

- Inflaton decays into MSSM sector w/o introducing special couplings by hand.
- Tree-level processes
 - Majorana neutrino mass (leptogenesis)
 - Top Yuakwa coupling w/ $K \sim |\phi|^2 |Q|^2$
- Gluon(ino) production via anomalies
- Universe may be reheated.
 (ex. string-inspired inflation)

Summary

- Gravitinos are produced via gravitational effects.
- We obtained generic production rates.
- Crucially change conventional picture of reheating process.
- Inflation/moduli models are constrained.
 (see talk by Takahashi for inflation)
- Universe may be reheated naturally.

STOP

Relaxation of Problem

- Vanishing VEV: symmetries at vac.
 cf. most inf. models do NOT
 but chaotic w/ Z2
- Dilution: introduce new fields gravitino/LSP again, so NOT really solved
- Special SUSY breaking: need discussion