

Pieter

van den Berg

N)

on behalf of the DØ
collaboration

Search for

anomalous

direct and indirect
CP violation in b to c transitions
SUSY '07 Karlsruhe

Outline

Analyses overview

(1) $p \bar{p} \rightarrow \mu \mu X$
(2) $B_{s}^{0} \rightarrow \mu^{+} D_{s}^{-} \nu X$
(3) $B^{+} \rightarrow J / \psi K^{+}$

Do preliminary

Other sources of charge asymmetry

Detector asvmmetries

Kaons

Results + combinations(hep-ex/0702030)

CP violation

Semileptonic charge asymmetry in B_{s}^{0} mixing

| | | $p \bar{p} \rightarrow \mu \mu X$ |
| :--- | :--- | :--- | | $\left(1 \mathrm{fb}^{-1}\right)$ |
| :---: |
| |
| |

Charge asymmetry in

$$
\text { (3) } \quad B^{+} \rightarrow J / \psi K^{+}
$$

(1.6 fb-1)
\rightarrow Direct CPV in $b \rightarrow c \bar{c} s$
SM: $A_{C P}\left(B^{+} \rightarrow J / \psi K^{+}\right)<1 \%$
"lack firm SM prediction"

CP violation in B_{s}^{0} mixing

$$
p \bar{p} \rightarrow \mu \mu X
$$

Extract $A_{S L}^{s}$ from dimuon charge asymmetry

$$
A_{S L}^{\mu \mu}=\frac{N\left(\mu^{+} \mu^{+}\right)-N\left(\mu^{-} \mu^{-}\right)}{N\left(\mu^{+} \mu^{+}\right)+N\left(\mu^{-} \mu^{-}\right)}=\frac{1}{4 f}\left[A_{S L}^{d}+\frac{f_{s} \chi_{s 0}}{f_{d} \chi_{d 0}} A_{S L}^{s}\right]
$$

$A_{S L}^{\mu \mu} \quad$ observed dimuon charge asymmetry
$f \quad$ accounts for other processes
$A_{S L}^{d} \quad$ from B-factories
$\frac{f_{s} \chi_{s 0}}{f_{d} \chi_{d 0}}$ production rates, mixing probabilities

CP violation in B_{s}^{0} mixing

(2)

$$
B_{s}^{0} \rightarrow \mu^{+} D_{s}^{-} \nu X
$$

$$
A_{S L}^{\mu, \text { untagged }}=\frac{N\left(\mu^{+} D_{s}^{-}\right)-N\left(\mu^{-} D_{s}^{+}\right)}{N\left(\mu^{+} D_{s}^{-}\right)+N\left(\mu^{-} D_{s}^{+}\right)}=\frac{1}{2 f} A_{S L}^{s}
$$

CP violation in B_{s}^{0} mixing

$$
B_{s}^{0} \rightarrow \mu^{+} D_{s}^{-} \nu X
$$

$(5.9 \pm 1.7) \% c \bar{c}(b \bar{b})$ from data

Other processes from Pythia $(83.2 \pm 3.3) \% B_{s}^{0}$

$27,300 \pm 300 D_{s}^{ \pm}$events

Direct CPV in $b \rightarrow c \bar{c} s$

$$
B^{+} \rightarrow J / \psi K^{+}
$$

direct

$$
A_{\mathrm{DCPV}}=\frac{N\left(\mathrm{~J} / \psi \mathrm{K}^{-}\right)-N\left(\mathrm{~J} / \psi \mathrm{K}^{+}\right)}{N\left(\mathrm{~J} / \psi \mathrm{K}^{-}\right)+N\left(\mathrm{~J} / \psi \mathrm{K}^{+}\right)}
$$

Kaon as charge tag

Direct CPV in $b \rightarrow c \bar{c} s$

$$
B^{+} \rightarrow J / \psi K^{+}
$$

reconstruct in excl. dimuon decay

Unbinned likelihood fit

Other sources of charge asymmetry

Detector Introduces apparent charge asymmetries

1) 2

Kaons K^{+}has longer inelastic interaction length than K^{-}

Other sources of charge asymmetry

Detector

toroid (1), (2) solenoid(3) polarity reversal

$$
q(+,-) \otimes \beta(+,-1) \otimes \gamma(+,-): 8
$$

$$
n_{q}^{\beta \gamma}=\frac{1}{4} N \epsilon^{\beta}(1+q A)\left(1+q \gamma A_{\mathrm{fb}}\right)\left(1+\gamma A_{\mathrm{det}}\right)\left(1+q \beta \gamma A_{\mathrm{ro}}\right)\left(1+q \beta A_{q \beta}\right)\left(1+\beta \gamma A_{\beta \gamma}\right)
$$

measured asymmetry nr of muons/kaons

Other sources of charge asymmetry

Kaons

K+ has longer inelastic interaction length than $K^{-} \downarrow$

$$
A_{K}=\frac{N\left(K^{+}\right)-N(K-)}{N\left(K^{+}\right)+N(K-)}>0
$$

Measured on large sample

The combinatorial background is sidebandsubtracted from D* signal

$$
A_{K}=0.01262 \pm 0.00171(\text { stat }) \pm 0.00023(\text { syst })
$$

$B 0$
 CP violation in B_{s}^{0} mixing

$$
p \bar{p} \rightarrow \mu \mu X
$$

$$
A_{S L}^{d}+\frac{f_{s} \chi_{s 0}}{f_{d} \chi_{d 0}} A_{S L}^{s}=-0.0092 \pm 0.0044(\text { stat }) \pm 0.00032(\text { syst })
$$

Using world average
Dominated by uncertainty on A_{K}
From B-factories: $A_{S L}^{d}=+0.0011 \pm 0.0055$

$$
A_{S L}^{s}=-0.0147 \pm 0.00113(\text { stat }+ \text { syst })
$$

CP violation in B_{s}^{0} mixing

$$
B_{s}^{0} \rightarrow \mu^{+} D_{s}^{-} \nu X
$$

$$
A\left(\mu D_{s}\right)=+0.0102 \pm 0.0081 \text { (stat) }
$$

$$
A_{S L}^{s}=2 f \times A_{S L}^{\mu, \text { untagged }}=+0.0245 \pm 0.0193(\text { stat }) \pm 0.0035(\text { syst })
$$

The two measurements are nearly independent

CP violation in B_{s}^{0} mixing
(1) (2) Combined constraints on ϕ_{s} at D0

$$
A_{S L}^{s}=0.0001 \pm 0.0090(\text { stat }+ \text { sys })
$$

from fit to timedependent angular distribution in $B_{s}^{0} \rightarrow \mathrm{~J} / \psi \phi$

constrained with l.t.

 and semileptonic charge asymmetries$$
\begin{gathered}
\phi_{s}=-0.70_{-0.39}^{+0.47} \\
\text { SM : } \phi_{s}=(4.2 \pm 1.4) \times 10^{-3} \\
\Delta \Gamma_{s}=0.13 \pm 0.09 \mathrm{ps}^{-1} \\
\text { SM : } \Delta \Gamma_{s}=0.088 \pm 0.017
\end{gathered}
$$

Direct CPV in $b \rightarrow c \bar{c} s$

$$
B^{+} \rightarrow J / \psi K^{+}
$$

$$
A(J / \psi K)=-0.0072 \pm 0.0073(\text { stat })
$$

Contains $A_{K}(J / \psi K)=0.0139 \pm 0.0013$ (stat)

$$
A_{C P}=+0.0067 \pm 0.0060(\text { stat }) \pm 0.0026(\text { syst })
$$

Most precise measurement
Previous measurements $(+) 0.030 \pm 0.014 \pm 0.010$ (BaBar) $-0.026 \pm 0.022 \pm 0.017$ (Belle) $0.018 \pm 0.043 \pm 0.004(\mathrm{CLEO})$

Conclusions

For the first time ϕ_{s} is constrained through measuring $A_{S L}^{s}$
$A_{C P}(J / \psi K)$ measurement is most precise to date
The measurement e concussion: Best Bet for BSM Soon predictions

Bo

$p \bar{p} \rightarrow \mu \mu X$

TABLE V: Weights of dimuon processes for standard cuts (obtained as described in the text). Note that 64% of dimuons are from direct-direct $b \bar{b}$ decay.

P_{1}	$\equiv 1$
P_{2}	0.116 ± 0.055
P_{3}	0.003 ± 0.003
P_{4}	0.093 ± 0.049
P_{5}	0.070 ± 0.042
P_{6}	0.023 ± 0.023
P_{7}	0.003 ± 0.003
P_{8}	0.078 ± 0.023
P_{9}	0.0001 ± 0.0001
P_{10}	0.001 ± 0.001
P_{11}	0.0002 ± 0.0002
P_{12}	0.163 ± 0.066
P_{13}	0.0005 ± 0.0005

TABLE IV: Processes contributing to dimuon ev mixing. The weights are normalized to direct-dir that b quarks decay as $\bar{b} . \bar{\chi}=f_{d} \bar{\chi}_{d}+f_{s} \chi_{s}$ is the b decay is $\rho^{\prime} \equiv 0.6 \pm 0.15[8] . ~ \rho \equiv \frac{1}{2} \rho^{\prime}(\chi-\bar{\chi})$. a symmetry is assumed. For example, the number

process	weight
$b \rightarrow \mu^{-}, b \rightarrow \mu^{+}$	$P_{1} \equiv 1$
$b \rightarrow \mu^{-}, \bar{b} \rightarrow \bar{c} \rightarrow \mu^{-}$	P_{2}
$b \rightarrow c \rightarrow \mu^{+}, \bar{b} \rightarrow \bar{c} \rightarrow \mu^{-}$	P_{3}
$b \rightarrow \mu^{-} c \rightarrow \mu^{+}$	P_{4}
$c \rightarrow \mu^{+}, \bar{c} \rightarrow \mu^{-}$	P_{5}
Drell-Yan, $J / \psi, \Upsilon$	P_{6}
dimuon cosmic rays	P_{7}
$\mu+K^{ \pm}$decay	P_{8}
$\mu+$ cosmic	P_{9}
$\mu+$ punch-through	P_{10}
$\mu+$ combinatoric	P_{11}
other	P_{12}
dimuon w. wrong sign	P_{13}

Muon system:

-1.8 T torojd for local muon tracking, $|\eta|<2$

- cosmic ray rejection
- low punch-through

Central tracking:

- Silicon (innermost) + fiber tracker in 2T solenoid, $|\eta|<3$ - High efficiency ($\sim 95 \%$ in the central region) and resolution:

$$
\sigma_{\left(p_{T}\right) / p_{T}^{2} \approx 0.002}
$$

Muon selection

- Hits in all 3 layers of muon chambers;
- Associated central track;
- Good quality of track;
- $\mathrm{P}_{\mathrm{T}}>4.2 \mathrm{GeV}$ or $\left|\mathrm{P}_{\mathrm{Z}}\right|>6.4 \mathrm{GeV}$;
- $3.0<\mathrm{P}_{\mathrm{T}}<15 \mathrm{GeV}$;
- Impact parameter to primary interaction: < 0.3 cm ;
- at least one scintillator hit with $|\Delta \mathrm{t}|<5 \mathrm{~ns}$;

Cuts on di-muons

- $\Delta \mathrm{P}>0.2 \mathrm{GeV}$
- $10^{\circ}<$ Opening angle $<170^{\circ}$
- $\Delta z<2 \mathrm{~cm}$
- Distance between hits in muon chamber $\Delta r>5 \mathrm{~cm}$;

Systematics in $A_{C P}\left(B^{+}{ }^{\circledR} J / \psi K^{+}\right)$

- from $\mathrm{J} / \psi \mathrm{KX}$: repeat the analysis with fraction of $\mathrm{J} / \psi \mathrm{KX}$ fixed to 0
- from $A(J / \psi \pi), A(J / \psi K X)$:
repeat the analysis with $A(J / \psi \pi), A(J / \psi K X)$ artificially suppressed by fixing the ratios
$R=(J / \psi \pi$ fraction $) /(B K G$ fraction $),(\mathrm{J} / \psi K X$ fraction $) /(B K G$ fraction $)$ in every subsample to the value determined from "all" fit.

Fixing	$\mathrm{A}(J / \psi K)$	$\mathrm{A}(J / \psi \pi)$	$\mathrm{A}\left(J / \psi K^{*}\right)$	A(BKG)
$J / \psi K^{*}$ fraction $\rightarrow 0$	-0.0079	-0.2098	-	0.0043
$R_{J / \psi \pi} \rightarrow$ "all" value	-0.0078	0.0488	- -0.0581	0.0198
$R_{J / \psi K^{*}} \rightarrow$ "all" value	-0.0077	-0. 1847	0.0035	0.0041
$R_{J / \psi \pi}, R_{J / \psi K^{*}} \rightarrow$ "all" val	-0.0098	O0. 0086	0.0077	0.0076

Kaon asymmetry

Technical complication: $\mu \mu$ and $J / \psi K$ samples are affected by:

For $p_{K}=10 \mathrm{GeV}: \sigma(\mathrm{K}-\mathrm{d})=38 \mathrm{mb}, \sigma(\mathrm{K}+\mathrm{d})=28 \mathrm{mb}$

- for $\mu \mu$: Estimated from distance to calorimeter and $\mathrm{K}^{-} \mathrm{d}, \mathrm{K}^{+} \mathrm{d}$ cross-sections
- for J/ $\psi \mathrm{K}$: Measured directly by comparing:

no physics asymmetry, $\quad A_{K}=-A_{\mu}$
nabbed from K. Holubyev (Lancaster University)

Details: Kaon asymmetry

$\mu(+) K(-) \pi(+)$ or $\mu(-) K(+) \pi(-)$ - right charge corr., D* peak

$\mu(+) K(+) \pi(+)$ or $\mu(-) K(-) \pi(-)$ - wrong charge corr,, background
nabbed from K. Holubyev (Lancaster University)

Details: Kaon asymmetry

nabbed from K. Holubyev (Lancaster University)

Details: Kaon asymmetry

To get Kaon asymmetry in J/uK sample:

- $A_{K}\left(P_{K}\right)$ was measured (detector characteristics)
- ... and convoluted with pdf of p_{K} in J/үK sample to give

$$
A_{K}=0.0139 \pm 0.0013(\text { stat }) \pm 0.0004(\text { syst }) \longleftarrow \text { unknown reco efficiency of some }
$$

nabbed from K. Holubyev (Lancaster University)

Polarity reversal: reducing detector systematics

In any case $\left(A_{S L}^{\mu \mu}, A_{S L}^{\mu, u n t}, A_{D C P V}, A_{K}\right)$ we want: $A=\frac{n_{+}-n_{-}}{n_{+}+n_{-}} \Rightarrow n_{q}=\frac{1}{2} N(1+q A)$

But:

$$
e f f^{+} \neq e f f^{-}
$$

Detector introduces apparent charge asymmetries. Example (for muons): range out in the toroid:

$$
\begin{array}{c|c}
n_{q}=\frac{1}{2} N\left[1+q\left(A+A_{r o}\right)\right] \\
\text { apparent A }
\end{array} \quad \rightarrow \quad n_{q}^{\beta}=\frac{1}{2} N\left(1+q A+q \beta A_{r o}\right) \text { - linear }
$$

Polarity reversal significantly reduces systematics from detector asymmetries

Detector effects

To account for detector-induced asymmetries to all orders - generalize

$$
n_{q}^{\beta \gamma}=\frac{1}{4} N \varepsilon^{\beta}(1+q A)\left(1+q \gamma A_{f b}\right)\left(1+\gamma A_{N S}\right)\left(1+q \beta \gamma A_{r o}\right)\left(1+\beta \gamma A_{\beta \gamma}\right)\left(1+q \beta A_{q \beta}\right)
$$

If $\quad N$ - total number of events in the sample, and ε^{β} - fraction of events with toroid/solenoid polarity
then \#events with specific:

- toroid/solenoid polarity β
- sign of particle pseudorapidity γ
- particle charge q
depends on asymmetries:
- charge - the one we are after
- forward-backward
- North-South
- range out
- the remaining two complete the system

To consistently account for correlations and errors:

- Divide sample into 8 subsamples according to the signs of $\quad \beta, \gamma, q$
- In each subsample extract $n_{q}^{\beta \gamma}$ by whatever method
- Solve 8 simultaneous equations for N, ε^{β}, and asymmetries

$A_{S L}^{\text {sunt }}: 8$ subsamples

nabbed from K. Holubyev (Lancaster University)

$A_{C P}\left(B^{+}{ }^{\circledR} J / \psi K^{+}\right): 8$ subsamples

$3,546 \pm 59$

$3,343 \pm 57$
$3,467 \pm 58$

$3,399 \pm 57$

$3,626 \pm 59$

$3,565 \pm 59$
nabbed from K. Holubyev (Lancaster University)

Some math

If n_{1} and n_{2} independent:

$$
\begin{aligned}
& A=\frac{n_{1}-n_{2}}{n_{1}+n_{2}}=\frac{\Delta n}{N}, \Delta n_{1}^{2}+\Delta n_{2}^{2}=\Delta N^{2} \\
& \left(\frac{\Delta A}{A}\right)^{2}=\frac{\Delta N^{2}}{(\Delta n)^{2}}+\frac{\Delta N^{2}}{N^{2}}=\frac{\Delta N^{2}\left(N^{2}+\Delta n^{2}\right)}{\Delta n^{2} N^{2}} \approx \frac{\Delta N^{2}}{\Delta n^{2}} \quad \text { we neglect } \quad \Delta n^{2} \ll N^{2}
\end{aligned}
$$

Therefore for any asymmetry: $\quad \Delta A=\frac{\Delta N}{N}$

$$
\begin{aligned}
& \text { If } A_{k}: \quad n_{q} \propto\left(1+q A_{C P}\right)\left(1+q A_{K}\right) \\
& \qquad
\end{aligned} \quad \propto\left(1+q A_{C P}+q A_{K}\right) \propto\left(1+q\left(A_{C P}+A_{K}\right)\right)
$$

