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General Idea

MBI from DBI [A.K. & D. Lüst, in progress]

choose N 4d space-filling branes (resp. antibranes) and
distribute them over the internal compact space

provide mechanism for susy-breaking, allowing branes to
interact with each other (e.g. anti-branes, fluxes,
non-perturbative effects)

kinetic terms for inflaton components from multi-brane DBI action

S =

N(+1)∑
i=1

Tp

∫
d4x

∫
dp−3y

√
−det Pi [G]
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General Idea

General Case

simplest cases = symmetric cases: underlying symmetry of
brane arrangement allows for identification (can be generalized)

∆X q
1 = . . . = ∆X q

N ≡ ∆X

where q counts internal directions along which the MBI branes
are distributed

the latter identification means we have both a multi-inflaton and
an effective single inflaton description

split the non-dynamical CM position from the dynamical inflaton
field ∆X

X q
i = X q

CM + f q
i ∆X ,

with constant coefficients f q
i capturing brane distribution
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General Idea

General Case

working in static gauge, we have for the 4d pullback

Pi [G]µν = gµν +
( ∑

q,s

f q
i f s

i gqs

)
∂µ∆X∂ν∆X

Without loss of generality, take internal metric gqs to be diagonal.

Expand DBI action up to quadratic order in ∂µ∆X and extract
inflaton’s kinetic term

Lkin = −1
2

TpV‖
( ∑

q

N∑
i=1

(
f q
i

)2
gqq

)
∂µ∆X∂µ∆X



Multi Brane Inflation Gravitational Waves Cascade Inflation

General Idea

General Case

read off proper normalization of inflaton ϕ

ϕ = cN∆X

cN =
(

TpV‖
∑

q

N∑
i=1

(
f q
i

)2
gqq

)1/2
∼ Nb

stronger N-scaling than in 4d assisted inflation possible!

εN =
M2

Pl

2

(
dU/dϕ

U

)2

∼ 1
N2b , |ηN | = M2

Pl
|d2U/dϕ2|

U
∼ 1

N2b

N-dependence of U drops out: N-scaling of slow-roll parameters
depends only on geometry of brane distribution!
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General Idea

Towards “Observing” Brane Distribution

We will now show how exponent b (if measured) contains information
about the distribution geometry of the branes

1. Hypercubic Arrangements

consider d-dimensional hypercubic lattice arrangements for N = nd

branes (q = 1, . . . , d). For instance, N = nd Dp -Dp̄ pairs with n pairs
along each row or column

• • • • •

Dp Dp̄ Dp Dp̄ Dp

• • • • •

Dp̄ Dp Dp̄ Dp Dp̄

• • • • •

Dp Dp̄ Dp Dp̄ Dp

• • • • •

Dp̄ Dp Dp̄ Dp Dp̄

• • • • •

Dp Dp̄ Dp Dp̄ Dp

• • • • •

Dp̄ Dp Dp̄ Dp Dp̄

•

•

•

•

Dp

Dp̄

Dp

Dp̄

∆X
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General Idea

Hypercubic Geometrical Factor

choose X q
CM = 0; individual brane positions are given by (n even)

X q
iq

= f q
iq
∆X , f q

iq
= iq = −n

2
, . . . ,

n
2

.

⇒ reduction to effective single field model due to discrete
translational symmetry

geometrical factor becomes (flat background)

∑
q

n/2∑
iq=−n/2

(
f q
iq

)2
= d

(n + 2)(n + 1)n
12

!∼ N2b

scales like n3 = N3/d , hence scaling exponent

b =
3

2d
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General Idea

Significance of Linear “Throats”

maximal scaling exponent when d = 1

d = 1 : bmax =
3
2

,

that means for linear brane arrangements. In this case we
achieve maximal suppression of the slow-roll parameters

d = 1 : εN ∼ ηN ∼
1

N2bmax
=

1
N3 .

One-dimensional distributions of brane/antibranes (“throats”) are
thus most effective in generating a prolonged period of inflation
(catalyzers for inflation)
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Multi M5-Brane Inflation

M5-MBI in Heterotic M-Theory [2 ×Becker, A.K. ’05]

Tadpole cancellation generically requires to add N M5-branes to
heterotic M-theory setup

L

E8 E8

M5’s

N − 1 moduli ∆Xi measure the nearest-neighbor distances
between adjacent M5-branes. Identification

∆X1 = . . . = ∆XN−1 ≡ ∆X

turns out to be stable attractor solution!
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Multi M5-Brane Inflation

M5-Brane MBI

open membrane instantons generate repulsive potential
between neighboring M5-branes and break supersymmetry

Σ2 × S
1/Z2

M5 M5

Force Force

∆Xi

exponential superpotentials for ∆Xi

Wi(∆Xi) ∼ e−∆Xi
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Multi M5-Brane Inflation

M5-Brane MBI

leads to exponential potential for canonically normalized inflaton

U(ϕ) ∼ (N − 1)2e
−

√
2

pN

ϕ
MPl

linear brane configuration, hence b = bmax = 3/2 and

ϕ ∼ N3/2∆X

implies parametrically most suppressed slow-roll parameters

εN =
1

pN
∼ 1

N3

ηN =
2

pN
∼ 1

N3
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Multi M5-Brane Inflation

M5-Brane MBI

in fact, 4d effective FRW cosmology with this potential has exact
solution power-law inflation [Lucchin & Matarrese ’95]

a(t) = a0tpN

with inflaton evolution

ϕ(t) =
√

2pNMPl ln
( t

ti

)
solution is valid for pN > 1/3 and inflation arises only if pN > 1
which is satisfied

pN ∼ N3 � 1
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Tensor Fraction

Scalar and Tensor Perturbations

negative spectral tilt (Ps(k) = curvature perturbation spectrum)

ns = 1 +
d ln Ps

d ln k
|k=aH=horizon exit = 1− 6εN + 2ηN

= 1− 2
pN

< 1

tensor fraction (Pt(k) = primordial tensor perturbation spectrum)

r =
Pt

Ps
|k=aH = 16εN =

16
pN

hence predicted relation

r = 8(1− ns)
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Tensor Fraction

M5-Brane MBI Gravitational Waves

n_S
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Two Puzzles and Their Resolution

1. Large Energy Scale of Inflation

amplitude of gravitational wave CMB anisotropy fixes
energy-scale of slow-roll inflation [Lyth, ’84]

U1/4 ≈ 3.3× 1016r1/4 GeV

detectable gravitational waves with r > 0.01 imply large inflation
energy-scale U1/4 > 1016 GeV

seemingly difficult to reconcile with particle theory models

in M5 MBI

U = (N − 1)2Ũ(ϕ)

thus true inflationary energy-scale Ũ parametrically smaller

Ũ1/4 ≈ 3.3× 1016 r1/4

(N − 1)1/2
GeV
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Two Puzzles and Their Resolution

2. The Lyth Bound

slow-roll inflation provides a lower bound on inflaton variation
during inflation [Lyth, ’96] (Efstathiou and Mack ’05 find even
tighter relation ∼ r1/4 from stochastic analysis)

∆ϕ

MPl
&
√

2r

hence large field models with ∆ϕ ≥ MPl give detectable tensor
modes but effective field theory description

V =
(

const. +
1
2

m2ϕ2 + λϕ4
)

+
∑

i=3,4,...

λ2i

M2i−4
Pl

ϕ2i

becomes unreliable if non-renormalizable couplings λ2i are of
O(1)

way out: small couplings λ2i as in chaotic inflation [Linde, ’04]
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Two Puzzles and Their Resolution

2. M5 MBI – the Lyth Bound

relation between canonically normalized inflaton ϕ and
microscopically relevant modulus ∆X

ϕ

MPl
= VM2

√
2pN

∆X
L

VM2 is open M2-instanton volume, L is S1/Z2 size

Lyth bound translates into (∆Xf −∆Xi ≈ ∆Xf )

∆Xf

L
&

√
r

√
pNVM2

thus Lyth bound becomes parametrically suppressed√
pN ∼ N3/2

E.g. ∆Xf /L &
√

r/70 for concrete data, which is perfectly
consistent with geometric constraint ∆Xf ≤ L
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Cascade Inflation [Ashoorioon & A.K. ’06]

Since M5-branes repel each other, they will ultimately hit the
boundaries

L

∆x

E8 E8M5’s

1 2 . . . . . . N

the outermost M5-branes are absorbed by the boundaries and
change their topological data (number of chiral families!)
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Power Spectrum

results in jumps in inflaton potential causing damped oscillations
in the power spectrum
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left graph: dependence of log Ps(k) on log k

right graph: zoom in on the first transition.
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Spectral Index

running of spectral index
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left graph: dependence of ns on log k for the first five inflationary
bouts

right graph: zoom in on the first transition.
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