Unitarity constraints on trilinear couplings in the MSSM

Alexander Schüssler

in collaboration with

D. Zeppenfeld

Institut für Theoretische Physik KIT

SUSY 2007, Karlsruhe, 26th of July 2007

outline

- bounds from perturbative unitarity
 - for 2-by-2 scalar scattering
 - to trilinear couplings in a simple scalar particle model example
- MSSM trilinear couplings, scalars and parameters
 - possibly strong trilinear couplings
 - scalar particles and states used
 - needed parameters for heavy squark and Higgs sector
- MSSM trilinear bounds
 - examples
 - 'survey'
- observations and conclusion

asymptotic time evolution operator, transition operator

unitarity
$$S^\dagger S = 1 \longleftrightarrow$$
 probability conservation $S = 1 + \mathrm{i} \; T$ $-\mathrm{i} \left(T - T^\dagger \right) = T^\dagger T$

asymptotic time evolution operator, transition operator

unitarity $S^{\dagger}S = 1 \longleftrightarrow$ probability conservation

$$S = 1 + i T$$

$$-\mathrm{i}\left(T-T^{\dagger}\right)=T^{\dagger}T$$

- restrict to scalar 2-by-2 scattering (this is a good approximation in perturbation theory)
- use energy momentum conservation and center of mass system

$$(2\pi)^4 \, \delta^{(4)} (P_a - P_b) \, \, \hat{\mathcal{T}}_{ab} (s, \cos \theta) = \left. \langle a | \, T | \, b \rangle \right|_{\hat{\mathbf{p}}_{a1} = \hat{\mathbf{e}}_z = (1,0,0), \, \, \hat{\mathbf{p}}_{b1} = (1,\theta,0) \, \, \text{in CMS}}$$

asymptotic time evolution operator, transition operator

unitarity $S^{\dagger}S = 1 \longleftrightarrow$ probability conservation

$$S=1+iT$$

$$-\mathrm{i}\left(T-T^{\dagger}\right)=T^{\dagger}T$$

- restrict to scalar 2-by-2 scattering (this is a good approximation in perturbation theory)
- use energy momentum conservation and center of mass system

$$(2\pi)^4 \, \delta^{(4)}(P_a - P_b) \, \hat{\mathcal{T}}_{ab}(s, \cos \theta) = \langle a | T | b \rangle \bigg|_{\hat{\mathbf{p}}_{a1} = \hat{\mathbf{e}}_z = (1,0,0), \; \hat{\mathbf{p}}_{b1} = (1,\theta,0) \; \text{in CMS}}$$

• use angular momentum conservation (project to partial waves)

$$\mathcal{T}_{ab}^{J} := \frac{1}{2} \frac{\lambda_a^{1/4} \lambda_b^{1/4}}{16\pi s} \int_{-1}^1 \operatorname{dcos} \theta \, \hat{T}_{ab}(s, \cos \theta) \, P_J(\cos \theta) .$$

the 1/2 is an (standard) convention for partial wave expansion

diagonalizing partial wave transition matrix elements

$$\frac{1}{2\mathrm{i}} \left(\mathcal{T}_{fi}^{J} - \mathcal{T}_{if}^{J*} \right) = \sum_{h} \mathcal{T}_{hf}^{J*} \mathcal{T}_{hi}^{J} \text{ (sum over intermediate 2-scalar states)}$$

ullet $(\mathcal{T}_{\mathit{fi}}^{\mathit{J}})$ is a normal matrix \longrightarrow diagonalized by unitary matrix

$$\implies \operatorname{Im} ilde{\mathcal{T}}_{ii}^J = | ilde{\mathcal{T}}_{ii}^J|^2$$
 eigenvalue equation

$$\implies y = x^2 + y^2$$
 circle equation for real and imaginary part

diagonalizing partial wave transition matrix elements

$$\frac{1}{2\mathrm{i}} \left(\mathcal{T}_{fi}^{J} - \mathcal{T}_{if}^{J*} \right) = \sum_{h} \mathcal{T}_{hf}^{J*} \mathcal{T}_{hi}^{J} \text{ (sum over intermediate 2-scalar states)}$$

ullet (\mathcal{T}_{fi}^J) is a normal matrix \longrightarrow diagonalized by unitary matrix

$$\implies \operatorname{Im} \tilde{\mathcal{T}}_{ii}^J = |\tilde{\mathcal{T}}_{ii}^J|^2$$
 eigenvalue equation

$$\implies y = x^2 + y^2$$
 circle equation for real and imaginary part

- for bounds only the largest eigenvalue matters
- ullet and only the biggest in scan of center of mass energy \sqrt{s}
- tree level (TL) values of the matrix elements \mathcal{T}_{fi}^J are real by proper choice of phases for the scattered states (the needed TL eigenvalues are real anyway)

Argand diagram / TL value determines minimal correction

circle
$$y = x^2 + y^2$$
 for the 'true' element

example minimal correction to get to the 'true' matrix element:

$$\begin{array}{l} x_{\mathsf{TL}} = 0.5 \Longrightarrow \\ |x_{\mathsf{TL}} - (x_{\mathsf{tr}} + \mathrm{i} y_{\mathsf{tr}})| / |x_{\mathsf{TL}}| > \\ 0,414 \iff \\ |x_{\mathsf{TL}} - (x_{\mathsf{tr}} + \mathrm{i} y_{\mathsf{tr}})| / |x_{\mathsf{tr}} + \mathrm{i} y_{\mathsf{tr}}| > \\ 0,465 \end{array}$$

scalar field trilinear couplings, scattering amplitude

example with two real scalar fields, Lagrangian

$$\mathcal{L} = rac{1}{2} \left(\sum_{i=1}^{2} (\partial_{\mu} arphi_{i})^{2} - m_{i}^{2} \, arphi_{i}^{2}
ight) - g \, arphi_{1} \, arphi_{1} \, arphi_{2}$$

channels of scattering amplitude $\varphi_1\varphi_1 \to \varphi_1 \varphi_1$

$$T_{aa}^{J} = \frac{\sqrt{1 - 4m_1^2/s}}{4 \cdot 16\pi} \int_{-1}^{1} d\cos\theta \left[\frac{g^2}{s - m_2^2} + \frac{g^2}{t - m_2^2} + \frac{g^2}{u - m_2^2} \right] P_J(\cos\theta)$$

maximum
$$\mathcal{T}_{ab}^{J} \tilde{\propto} \frac{g^2}{\text{squared masses in the model}}$$

amplitude over center of mass energy

feature of 2-by-2 scalar scattering with only trilinear couplings:

- amplitude drops with 1/s for big \sqrt{s} .
- example amplitude $\varphi_1\varphi_2 \rightarrow \varphi_1\varphi_2$, g=100, $m_1=10$, $m_2=15$

plotted: amplitude of the process over center of mass energy

just at the unitarity limit

2 scalar field model mass bound for g = 100

plotted:
squared max.
T-matrix
eigenvalue
values
over the 2 mass
parameters

coupling to masses ratio is bounded

information loss due to u-channel pole in the lower right unitarity bound at outer end of red region perturbativity bound at outer end of green region

now to the MSSM, the trilinear couplings

$$\mathcal{L}_{soft} = \ldots - \left(\lambda_d A_d H_1 \tilde{Q}_L \tilde{d}_R^\dagger + \lambda_u A_u H_2 \tilde{Q}_L \tilde{u}_R^\dagger + \ldots + \text{h.c.} \right)$$

example $h^0, \tilde{t}_1, \tilde{t}_1^*$ here in decoupling scenario (for simpler formula)

$$\text{vertex } V_{h^0,\tilde{t}_1,\tilde{t}_1^*} = -\operatorname{i} g' \left(\frac{M_W}{c_w^2} \left(I_3^t c_t^2 - Q_t c_{2t} \right) + \frac{m_t}{M_W} \, m_t + \frac{m_t}{2 M_W} \, X_t \, s_{2t} \right)$$

now to the MSSM, the trilinear couplings

$$\mathcal{L}_{soft} = \ldots - \left(\lambda_d A_d H_1 \tilde{Q}_L \tilde{d}_R^\dagger + \lambda_u A_u H_2 \tilde{Q}_L \tilde{u}_R^\dagger + \ldots + \text{h.c.} \right)$$

example $h^0, ilde{t}_1, ilde{t}_1^*$ here in decoupling scenario (for simpler formula)

$$\text{vertex } V_{h^0, \tilde{t}_1, \tilde{t}_1^*} = -\operatorname{i} g' \left(\frac{M_W}{c_w^2} \left(I_3^t c_t^2 - Q_t c_{2t} \right) + \frac{m_t}{M_W} m_t + \frac{m_t}{2M_W} X_t \, s_{2t} \right)$$

similar
$$h^0, \tilde{b}_1, \tilde{b}_1^*$$
 vertex $V_{h^0, \tilde{b}_1, \tilde{b}_1^*} = -\operatorname{i} g'\left(\ldots - \frac{m_b}{2M_W}\,X_b\,s_{2b}\right)$

with
$$X_t = A_t - \mu \cot \beta$$
, $X_b = A_b - \mu \tan \beta$
 $g' = \sqrt{4\pi\alpha_{\text{QED}}}/\sin\theta_W$, $s_{2t} = \sin(2\theta_{\tilde{t}})$, $s_{2b} = \sin(2\theta_{\tilde{b}})$

needed particles for 'heavy' squark and Higgs sector

using Feynman $(R_{\xi} = 1)$ gauge and Goldstone equivalence theorem

- G^0 , G^{\pm} for longitudinal degree of freedom of Z^0 , W^{\pm}
- this part has the (potentially strong) trilinear coupling

particle content

- scalar Higgs: h^0 , H^0 , A^0 , H^{\pm} , G^0 and G^{\pm}
- ullet 'heavy' squarks: $ilde{t}_1$, $ilde{t}_2$, $ilde{b}_1$, $ilde{b}_2$

to get the scattering states just put them in pairs

mixing blocks in the T-Matrix

use charge, color and baryon number to form blocks, examples:

charge zero, color singlet:

				$ ilde{b}_1 ilde{b}_1^*$		
$\tilde{b}_2 \tilde{b}_2^*$	$h^0 h^0$	$h^0 H^0$	i <i>h</i> ⁰ <i>A</i> ⁰	i <i>h</i> ⁰ <i>G</i> ⁰	$H^0 H^0$	i <i>H</i> ⁰ <i>A</i> ⁰
i <i>H G</i> ⁰	$A^0 A^0$	$A^0 G^0$	$G^0 G^0$	H^+H^-	H^+G^-	G^+G^-

mixing blocks in the T-Matrix

use charge, color and baryon number to form blocks, examples:

charge zero, color singlet:

$\widetilde{t}_1 \ \widetilde{t}_1^*$	$\tilde{t}_1 \tilde{t}_2^*$	$ ilde{t}_2 ilde{t}_1^*$	$\tilde{t}_2 \tilde{t}_2^*$	$ ilde{b}_1 ilde{b}_1^*$	$ ilde{b}_1 \ ilde{b}_2^*$	$\tilde{b}_2 ilde{b}_1^*$
$\tilde{b}_2 \tilde{b}_2^*$	$h^0 h^0$	$h^0 H^0$	i <i>h</i> ⁰ <i>A</i> ⁰	i <i>h</i> ⁰ <i>G</i> ⁰	$H^0 H^0$	i <i>H</i> ⁰ <i>A</i> ⁰
i <i>H G</i> ⁰	$A^0 A^0$	$A^0 G^0$	$G^0 G^0$	H^+H^-	H^+G^-	G^+G^-

- charge 1/3, color 6 : $\tilde{t}_1 \tilde{b}_1 \mid \tilde{t}_1 \tilde{b}_2 \mid \tilde{t}_2 \tilde{b}_1 \mid \tilde{t}_2 \tilde{b}_2$
- ullet charge 1/3, color $ar{3}$: $ilde{t}_1 ilde{b}_1 \mid ilde{t}_1 ilde{b}_2 \mid ilde{t}_2 ilde{b}_1 \mid ilde{t}_2 ilde{b}_2$
- charge 1/3, color $\overline{3}$:

all together 15 independent blocks

needed parameters for 'heavy' squark and Higgs sector

ullet t $_{eta}$: ratio of the two Higgs vacuum expectation values

 \bullet M_A : mass of pseudo-scalar Higgs

ullet : Higgsino mass parameter

ullet A_t : u-type-squark-squark-Higgs coupling parameter for ilde t

ullet A_b : d-type-squark-squark-Higgs coupling parameter for $ilde{b}$

• $M_{\tilde{O}}^2$: mass parameter for 'heavy' lefthanded squarks

• $M_{\tilde{\tau}}^2$: mass parameter for the righthanded Stop

• $M_{\tilde{b}}^2$: mass parameter for the righthanded Sbottom

the choice is to use real parameters (possible CP violation effects neglected)

calculating the unitarity bound

need maximum eigenvalue of \mathcal{T}^J

- ullet \mathcal{T}^J is now block diagonal
- take the maximum eigenvalue from all blocks and all center of mass energies
- this biggest eigenvalue (independent of scattering energy)
 is now treated as a function x with the MSSM parameters as
 its variables
- in the following plots it appears squared x^2
- only the J=0 partial wave matters ($J\neq 0$ is suppressed)

the Higgs mass, example with 2 loop m_h $M_A = M_{SUSY} = 1 \text{TeV}$, $\mu = -200 \text{GeV}$, $\tan \beta = 30$

squared max. T-matrix eigenvalue / $X_t = A_t - \cot \beta$

some doubled values (scan over \sqrt{s} hasn't found the biggest value)

unitarity bound $-3100/\!\!+3200$ GeV, perturbativity bound ±2750 GeV

the Higgs mass, example with fixed $M_h = 120 \text{GeV}$ $M_A = M_{\text{SUSY}} = 1 \text{TeV}$, $\mu = -200 \text{GeV}$, $\tan \beta = 30$

squared max. T-matrix eigenvalue / $X_t = A_t - \cot \beta$

curve(s) around 10^{-3} are from other (width) bounds

unitarity bound ± 3700 GeV, perturbativity bound ± 2750 GeV

the A parameter, $M_A = \mu = M_{SUSY} = 500 \text{GeV}$, tan $\beta = 50$

smaller SUSY mass scale example

squared max. T-matrix eigenvalue over $A = A_t = A_b$ parameter

unitarity bound ± 1500 GeV, perturbativity bound ± 1350 GeV

parameterscan of all 8 parameters, projection to X_b - X_t

squared maximum *T*-matrix eigenvalue

 $x^2 < 0.25$ unitarity bound

experimental limits (PDG) for squarks, fixed $M_h = 120 \text{GeV}$ unitarity bound: $|X_t| < 7 \text{TeV}$, $|X_b| < 320 \text{TeV}$

parameterscan of all 8 parameters, projection to X_b - X_t

squared maximum *T*-matrix eigenvalue

 $x^2 < 0.05$ perturbativity bound

experimental limits (PDG) for squarks, fixed $M_h = 120$ GeV perturbativity bound: $|X_t| < 5$ TeV, $|X_b| < 220$ TeV

special case very light \hat{b}_1 without coupling to Z^0

squared maximum *T*-matrix eigenvalue

 $x^2 < 0.25$ unitarity bound

no mass bounds used, fixed $M_h = 120 \text{GeV}$, $m_{\tilde{b}_1} = 5 \text{GeV}$, $\theta_{\tilde{b}} = 1.17$ unitarity bound: $|X_t| < 6 \text{TeV}$, $|X_b| < 75 \text{TeV}$

special case very light \hat{b}_1 without coupling to Z^0

squared maximum *T*-matrix eigenvalue

 $x^2 < 0.05$ perturbativity bound

no mass bounds used, fixed $M_h = 120 \text{GeV}$ $m_{\tilde{b}_1} = 5 \text{GeV}$ $\theta_{\tilde{b}} = 1.17$ perturbativity bound: $|X_t| < 5 \text{TeV}$, $|X_b| < 50 \text{TeV}$

advantages and disadvantages of the method

advantages

- projection to partial waves is analytic (no need for numerical integration)
- handling the s, t and u channel poles is understood and implemented (the poles would take another talk)

disadvantages

- \sqrt{s} scan is needed
- numerical diagonalization is needed

further observations

- restricting to J=0 partial wave is enough
- bounds can derived from very few T-matrix blocks
- bounds from particle widths are less restrictive then amplitude bounds (bounds from widths were not discussed here)

conclusion

- bounds to trilinear couplings can be produced with tree level computation
- example: A_t , A_b , $\mu \tan \beta$, X_t , X_b
- program contains all relevant parameters ⇒ can be used for many scenarios
- you get stronger bounds when varying fewer parameters

conclusion

- bounds to trilinear couplings can be produced with tree level computation
- example: A_t , A_b , $\mu \tan \beta$, X_t , X_b
- program contains all relevant parameters

 can be used for many scenarios
- you get stronger bounds when varying fewer parameters

... thank you