Moduli Stabilization in Meta-Stable Heterotic String Vacua

Alexander Westphal ISAS/SISSA & INFN, Trieste (0707.0497)

in collaboration with Marco Serone

- Moduli Stabilization met remarkable progress in recent years (mainly type II)
- Uses Fluxes (H₃, F₃, ...) as essential tool

- Moduli Stabilization met remarkable progress in recent years (mainly type II)
- Uses Fluxes (H₃, F₃, ...) as essential tool

However ...

- No string description of fluxes so far at any scale
- gauge coupling unification only "by hand" in type II

- Moduli Stabilization met remarkable progress in recent years (mainly type II)
- Uses Fluxes (H₃, F₃, ...) as essential tool

However ...

- No string description of fluxes so far at any scale
- gauge coupling unification only "by hand" in type II

In heterotic strings H-flux is often problematic ...

- Moduli Stabilization met remarkable progress in recent years (mainly type II)
- Uses Fluxes (H₃, F₃, ...) as essential tool

However ...

- No string description of fluxes so far at any scale
- gauge coupling unification only "by hand" in type II

In heterotic strings H-flux is often problematic ...

Go back to moduli stablization and SUSY breaking in flux-less, perturbative heterotic strings

$$S \sim T \gtrsim 1$$

$$m_{3/2} \gtrsim \text{TeV}$$

$$m_{3/2} \gtrsim \text{TeV}$$

$$m_S \sim m_T \gtrsim \text{TeV}$$

$$K = -\ln(S + \bar{S}) \;, \quad W = A_1 e^{-a_1 S} - A_2 e^{-a_2 S}$$
 [Krasnikov]

$$K = -\ln(S + \bar{S}) \;, \quad W = A_1 e^{-a_1 S} - A_2 e^{-a_2 S}$$
 [Krasnikov]

 $V_F = e^K (K^{S\bar{S}} |D_S W|^2 - 3|W|^2)$ has SUSY AdS minimum at

$$K = -\ln(S + \bar{S}) \;, \quad W = A_1 e^{-a_1 S} - A_2 e^{-a_2 S}$$
 [Krasnikov]

$$V_F = e^K (K^{S\bar{S}} |D_S W|^2 - 3|W|^2)$$
 has SUSY AdS minimum at

$$K = -\ln(S + \bar{S}) \; , \quad W = A_1 e^{-a_1 S} - A_2 e^{-a_2 S}$$
 [Krasnikov]

$$V_F = e^K (K^{S\bar{S}} |D_S W|^2 - 3|W|^2)$$
 has SUSY AdS minimum at

$$K = -\ln(S + \bar{S}) \;, \quad W = A_1 e^{-a_1 S} - A_2 e^{-a_2 S}$$
 [Krasnikov]

$$V_F = e^K (K^{S\bar{S}} |D_S W|^2 - 3|W|^2)$$
 has SUSY AdS minimum at

$$K = -\ln(S + \bar{S}) \;, \quad W = A_1 e^{-a_1 S} - A_2 e^{-a_2 S}$$
 [Krasnikov]

$$V_F = e^K (K^{S\bar{S}} |D_S W|^2 - 3|W|^2)$$
 has SUSY AdS minimum at

$$S_0 = \frac{1}{a_2 - a_1} \ln \left(\frac{a_2 A_2}{a_1 A_1} \right)$$

$$K = -\ln(S + \bar{S}) \; , \quad W = A_1 e^{-a_1 S} - A_2 e^{-a_2 S}$$
 [Krasnikov]

$$V_F = e^K (K^{S\bar{S}} |D_S W|^2 - 3|W|^2)$$
 has SUSY AdS minimum at

$$S_0 = \frac{1}{a_2 - a_1} \ln \left(\frac{a_2 A_2}{a_1 A_1} \right) \gtrsim 1$$
 [Casas, de Carlos & Munoz]

Consider 2 classes of racetracks

Consider 2 classes of racetracks

$$W_{RT2} = A_2 e^{-a_2(S+\gamma T)} - A_1 e^{-a_1 S}$$

$$W_{RT3} = (A_2 e^{-a_2 S} - A_3 e^{-a_3 S}) e^{-\gamma T} - A_1 e^{-a_1 S}$$

$$K = -\ln(S + \bar{S}) \;, \quad W = A_1 e^{-a_1 S} - A_2 e^{-a_2 S}$$
 [Krasnikov]

$$V_F = e^K (K^{S\bar{S}} |D_{\delta}W|^2 - 3|W|^2)$$
 has SUSY AdS minimum at

Consider 2 classes of racetracks

$$W_{RT2} = A_2 e^{-a_2} \underbrace{(S+\gamma T)}_{-A_1} - A_1 e^{-a_1 S}$$
 $W_{RT3} = (A_2 e^{-a_2 S} - A_3 e^{-a_3 S}) e^{-\gamma T} - A_1 e^{-a_1 S}$

Consider 2 classes of racetracks

 $W_{RT2} = A_2 e^{-a_2} \underbrace{(S+\gamma T)}_{[Dixon, Kaplunovski, Louis]}^{[Dixon, Kaplunovski, Louis]}$ $W_{RT3} = (A_2 e^{-a_2 S} - A_3 e^{-a_3 S}) e^{-\gamma T} - A_1 e^{-a_1 S}$

RT2: has a non-SUSY minimum, $F_T \neq 0$, but still AdS RT3: has a SUSY AdS minimum in S and T!

SUSY breaking - add one more condensate: SU(N) with N_f flavors Q, \tilde{Q} such that $N < N_f < 3N/2$ - realizes ISS

[Intriligator, Seiberg & Shih]

SUSY breaking - add one more condensate: SU(N) with N_f flavors Q, \tilde{Q} such that $N < N_f < 3N/2$ - realizes ISS

[Intriligator, Seiberg & Shih]

case: $N_f = N + 1$, flat space analysis

SUSY breaking - add one more condensate: SU(N) with N_f flavors Q, \tilde{Q} such that $N < N_f < 3N/2$ - realizes ISS

[Intriligator, Seiberg & Shih]

case: $N_f = N + 1$, flat space analysis

Dynamics of baryons $\varphi \sim Q^N$, $\tilde{\varphi} \sim \tilde{Q}^N$ & mesons $\Phi \sim Q\tilde{Q}$ below $\Lambda_{\rm ISS}$

$$W_{\rm ISS} = \operatorname{Tr} \tilde{\varphi}^t \Phi \varphi - \mu^2 \operatorname{Tr} \Phi + \frac{\det \Phi}{\Lambda_{\rm ISS}^{N-2}}$$

 $\Phi \ll \mu \ll \Lambda_{\rm ISS}$: determinant piece negligible, SUSY-breaking vacuum at

$$\Phi_0 = \begin{pmatrix} Y_0 & 0_N \\ 0_N & \hat{\Phi}_0 \end{pmatrix} = 0 \quad , \quad \varphi_0 = \tilde{\varphi}_0 = \begin{pmatrix} \mu \\ 0_N \end{pmatrix}$$

 $\mu \ll \Phi \ll \Lambda_{\rm ISS}$: trilinear piece negligible, SUSY vacuum at

$$\varphi_{\text{SUSY}} = \tilde{\varphi}_{\text{SUSY}} = 0 \quad , \quad \Phi_{\text{SUSY}} = \frac{\mu}{\epsilon_{\text{ISS}}^{(N-2)/N}} \mathbb{1}_{N_f} \quad , \quad \epsilon_{\text{ISS}} = \frac{\mu}{\Lambda_{\text{ISS}}}$$

embedding into heterotic supergravity - μ and $\Lambda_{\rm ISS}$ S-dependent the full system is now:

$$W = W_{\rm RT} + W_{\rm ISS}$$
 , $\mu^2(S) = e^{-\eta S}$, $\Lambda_{\rm ISS} = e^{-\frac{8\pi^2}{2N-1}S}$ $K = -3\ln(T + \bar{T}) - \ln(S + \bar{S}) + K_{\rm ISS}$

 $K_{\rm ISS}$ now essentially unknown, allow for S- and T-dependence, take

$$K_{\rm ISS} = \frac{\operatorname{Tr} \Phi^{\dagger} \Phi}{(T + \bar{T})^m (S + \bar{S})^n} + \frac{\operatorname{Tr} (\varphi^{\dagger} \varphi + \tilde{\varphi}^{\dagger} \tilde{\varphi})}{(T + \bar{T})^p (S + \bar{S})^q}$$

Study of full $V_F(S, T, \Phi, \varphi, \tilde{\varphi})$ is hard. Expand in powers of $\mu \ll 1$

$$V_F = V_s + V_w$$
 with: $V_s \gg V_w$

 \Longrightarrow Don't forget radiative corrections to K over inclusion of gravity!

— results in a mass term $\sim \mu^2 |\hat{\Phi}|^2$

 \implies Don't forget radiative corrections to K over inclusion of gravity! — results in a mass term $\sim \mu^2 |\hat{\Phi}|^2$

$$V_s \sim \mu^4 \ (i, j = S, T)$$
 – we get

$$V_s = e^{K_{\rm RT}} \left(K_{\rm RT}^{i\bar{\jmath}} D_i W_{\rm RT} \overline{D_j W_{\rm RT}} - 3|W_{\rm RT}|^2 + N_c \mu^4(S) \right)$$

 \Longrightarrow Don't forget radiative corrections to K over inclusion of gravity!

— results in a mass term $\sim \mu^2 |\hat{\Phi}|^2$

$$V_s \sim \mu^4 \ (i, j = S, T)$$
 – we get
$$V_s = e^{K_{\rm RT}} \left(K_{\rm RT}^{i\bar{\jmath}} D_i W_{\rm RT} \overline{D_j W_{\rm RT}} - 3|W_{\rm RT}|^2 + N_c \mu^4(S) \right)$$

 \Longrightarrow Don't forget radiative corrections to K over inclusion of gravity! — results in a mass term $\sim \mu^2 |\hat{\Phi}|^2$

$$V_s \sim \mu^4 \ (i, j = S, T)$$
 – we get
$$V_s = e^{K_{\rm RT}} \left(K_{\rm RT}^{i\bar{\jmath}} D_i W_{\rm RT} \overline{D_j W_{\rm RT}} - 3|W_{\rm RT}|^2 + N_c \mu^4(S) \right)$$

Requiring Minkowski vacuum determines size of $W_{\rm RT}$

$$W_{\rm RT} \sim \mu_0^2 \equiv \mu^2(S_0) \quad \Rightarrow \quad m_{3/2} = e^{K/2} |W_0| \sim \mu_0^2$$

 \Longrightarrow Don't forget radiative corrections to K over inclusion of gravity! — results in a mass term $\sim \mu^2 |\hat{\Phi}|^2$

$$V_s \sim \mu^4 \ (i, j = S, T)$$
 - we get
$$V_s = e^{K_{\rm RT}} \left(K_{\rm RT}^{i\bar{\jmath}} D_i W_{\rm RT} \overline{D_j W_{\rm RT}} - 3|W_{\rm RT}|^2 + N_c \mu^4(S) \right)$$

Requiring Minkowski vacuum determines size of $W_{\rm RT}$

$$W_{\rm RT} \sim \mu_0^2 \equiv \mu^2(S_0) \quad \Rightarrow \quad m_{3/2} = e^{K/2} |W_0| \sim \mu_0^2$$

 \rightarrow stabilizes S and T very similarly to the racetrack alone.

 $V_w \sim \mu^6$ then shifts all fields by negligibly small amounts $\sim \mu^2$ see also [Dudas, Papineau & Pokorski; Abe et al.]

 \implies Don't forget radiative corrections to K over inclusion of gravity! — results in a mass term $\sim \mu^2 |\hat{\Phi}|^2$

$$V_s \sim \mu^4 \ (i, j = S, T)$$
 - we get
$$V_s = e^{K_{\rm RT}} \left(K_{\rm RT}^{i\bar{\jmath}} D_i W_{\rm RT} \overline{D_j W_{\rm RT}} - 3|W_{\rm RT}|^2 + N_c \mu^4(S) \right)$$

Requiring Minkowski vacuum determines size of $W_{\rm RT}$

$$W_{\rm RT} \sim \mu_0^2 \equiv \mu^2(S_0) \quad \Rightarrow \quad m_{3/2} = e^{K/2} |W_0| \sim \mu_0^2$$

 \rightarrow stabilizes S and T very similarly to the racetrack alone.

 $V_w \sim \mu^6$ then shifts all fields by negligibly small amounts $\sim \mu^2$ see also [Dudas, Papineau & Pokorski; Abe et al.]

The SUSY vacuum of ISS is still there - as it is AdS, the non-SUSY vacuum is meta-stable

Controlled by three scales

Controlled by three scales

ho The Planck scale $M_{
m Pl}$: sets the moduli VEVs

 $\, ullet$ Intermediate scale $\, \mu_0 \sim e^{-\eta S_0} \,$:meson/baryon masses, F-term scale

 \odot low scale $\mu_0^2 \sim e^{-2\eta S_0}$: gravitino and moduli masses

The racetrack and the "uplifting" ISS sector both come from a strongly coupled hidden gauge sector of the heterotic string: $rank \le 12$

The racetrack and the "uplifting" ISS sector both come from a strongly coupled hidden gauge sector of the heterotic string: $rank \le 12$

Assume no light charged matter ... except for the ISS flavors

The racetrack and the "uplifting" ISS sector both come from a strongly coupled hidden gauge sector of the heterotic string: $rank \le 12$

Assume no light charged matter ... except for the ISS flavors

explained with dynamical mechanism (retro-fitting) [Dine, Feng & Silverstein]

	RT3	RT2
	$Sp(4)^2 \times SU(4)^2 \times G_{\text{vis}}$	$SU(4) \times SU(5)^2 \times G_{\text{vis}}$
A_1	1/4	1/200
A_2	3	4
A_3	1/1000	
$\langle S \rangle$	1.20	1.69
$ \langle T \rangle$	1.40	1.57
$\mid \mu_0 \mid$	$1.2 \cdot 10^{11} \mathrm{GeV}$	$1.0 \cdot 10^{11} \mathrm{GeV}$
$\sqrt{F_{\hat{\Phi}}}$	$2.4 \cdot 10^{11} \mathrm{GeV}$	$2.3 \cdot 10^{11} \mathrm{GeV}$
$\mid m_s \mid$	$3500\mathrm{TeV}$	$2300\mathrm{TeV}$
$\mid m_t$	$8.6\mathrm{TeV}$	$0.9\mathrm{TeV}$
$\mid m_{3/2} \mid$	$1.1\mathrm{TeV}$	$0.6\mathrm{TeV}$
$C.C./3m_{3/2}^2$	-0.04	-0.03
ϵ_{ISS}	0.04	0.12

Conclusions

Conclusions

- Closer look at moduli stabilization in the perturbative heterotic string at the supergravity level
- Non-perturbative gauge dynamics **alone** leads to moduli stabilization **ANO** low energy SUSY breaking in a (nearly) Minkowski minimum
- open questions:
 - explicit heterotic string embedding (Z6-II orbifolds?)
 - dynamics of massive flavors responsible for the Ai
 - soft terms
 - D-terms, anomalous U(1)'s
 - inflation driven by the moduli / mesons?