Time-dependent CP asymmetries in Bs decays at LHCb

J. Blouw

Physikalisches Institut, Universitaet Heidelberg

SUSY07, Karlsruhe, Germany

Layout

- Introduction
- Time-dependent CP asymmetries
- LHCb Spectrometer
- LHCb sensitivity
- Conclusions

Introduction

Why search for New Physics in CP asymmetries?

In the Standard Model (SM):

Corollary

One single phase source of CP violation in flavour changing processes

Conclusion

- 1 3 up-type quarks, 3 down-type quarks
- 2 Unitarity requirement imposes constraints on elements
- strong predictive power

Many New Physics models

- introduce many new CP-violation phases
- 2 require approximate CP symmetry
- violate CP only in mixing amplitudes

Why search for New Physics in CP asymmetries?

- CKM mechanism can not explain observed baryogenesis
- $^{2}~$ strong CP problem: why CP is so small in strong interactions? $(\theta_{CP} \lesssim 10^{-10})$

How to observe New Physics in experiments:

$$\mathcal{A}_{\mathrm{CP}}(t) = -rac{\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\cos(\Delta M_{\mathrm{S}}t) + \mathcal{A}_{\mathrm{CP}}^{\mathrm{mix-ind}}\sin(\Delta M_{\mathrm{S}}t)}{\cosh(\Delta\Gamma_{\mathrm{S}}t/2) + \mathcal{A}_{\Delta\Gamma_{\mathrm{S}}}\sinh(\Delta\Gamma_{\mathrm{S}}t/2)}$$

- single phase in CKM describes all SM CP violation
 - \Rightarrow SM predicts $CP(B_s \rightarrow J/\Psi K_s) = CP(B \rightarrow \phi K_s)$
- ² SM predicts many CP violating observables are small
 - \Rightarrow observation of deviations from zero constrain new physics ${\rm CP}({\rm B}_s \to {\it J}/\Psi \; \phi), {\rm CP}({\rm B}_s \to \phi \phi)$

New Physics from B_s decays

Contribution from NP to CP asymetries through loop-diagrams:

Mixing diagram (exchange of gluinos)

Penguin diagram

For
$$B_s \rightarrow J/\Psi \phi$$

$$\phi_s(\mathrm{B}_s o J/\Psi \ \phi) = 2 \, \mathrm{arg}(\mathit{V}_{\mathrm{ts}}^* \mathit{V}_{\mathrm{tb}}) = -2\chi = -0.035$$

For $B_s \to \phi \phi$, $\phi_s \approx 2 \arg(V_{ts}^* V_{tb}) - \arg(V_{tb} V_{ts}^* / V_{tb}^* V_{ts}) = -2\chi + 2\chi = 0$ With NP, $\phi_s(B_s \to \phi \phi) \approx \phi_s^{NP}$.

Time-dependent CP asymmetries (I)

 $b \rightarrow c\bar{c}s$ decays into CP-even eigenstates:

•
$$B_s \rightarrow J/\Psi \eta$$

$$lacksquare$$
 $B_{m{s}}
ightarrow \eta_{m{c}} \phi$

$$\quad \ \ B_{\boldsymbol{\mathcal{S}}} \to D_{\boldsymbol{\mathcal{S}}}D_{\boldsymbol{\mathcal{S}}}$$

•
$$B_s \to D_s \pi$$

admixture of CP eigen states:

$$\bullet$$
 $B_s \rightarrow \phi \phi$

•
$$B_s \rightarrow J/\Psi \phi$$

Measure:

$$A_{\mathrm{CP}}(t) = -\frac{\eta_f \sin \phi_s \sin(\Delta m_s t)}{\cosh(\Delta \Gamma_s t/2) - \eta_f \cos \phi_s \sinh(\Delta \Gamma_s t/2)}$$

Where

$$\Delta m_s = M_H - M_L$$

 $\Delta \Gamma_s = \Gamma_L - \Gamma_H$
 $\eta_f = 1(-1) \text{ CP} - \text{even}(\text{CP} - \text{odd})$

New Physics contributions to CP

Usually, NP parameterized in 2 different ways:

$$\begin{array}{rcl} M_{12} & = & M_{12}^{SM} r_s^2 e^{i\phi_s} \\ & \equiv & M_{12}^{SM} (1 + h_s e^{2i\sigma}) \end{array}$$

In B_s $\rightarrow J/\Psi \phi$,

$$\begin{array}{rcl} \phi_{\mathcal{S}}(\mathrm{B}_{\mathcal{S}} \to J/\Psi \; \phi) & = & \phi_{\mathcal{S}}^{\mathrm{SM}}(\mathrm{B}_{\mathcal{S}} \to J/\Psi \; \phi) - \mathrm{arg}[1 + h_{\mathcal{S}}e^{2i\sigma_{\mathcal{S}}}] \\ \Delta m_{\mathcal{S}} & = & \Delta m_{\mathcal{S}}^{\mathrm{SM}} \left| 1 + h_{\mathcal{S}}e^{2i\sigma} \right| \\ \Delta \Gamma_{\mathcal{S}} & = & \left| \Delta \Gamma_{\mathcal{S}}^{\mathrm{SM}} \right| \cos^{2}[\mathrm{arg}(1 + h_{\mathcal{S}}e^{2i\sigma})] \end{array}$$

In MFV, $\sigma_s = 0 \mod \pi/2$, but *e.g.* in NMFV, $\sigma_s \neq 0$ is allowed...

Δm_s from $B_s \to D_s \pi$

Time-dependent CP asymmetries of B_s to CP-eigen states

Decay rate R:

$$R(t,r) \propto rac{e^{-\Gamma_s t}}{2} \left\{ \cosh rac{\Delta \Gamma_s t}{2} + r D \cos (\Delta m_s t)
ight\}$$

Use $B_s \to D_s \pi$ to determine Δm_s

In 1 year of LHCb running:

- $B_s \rightarrow D_s \pi$ Yield: 140k,
- B/S < 0.05,
- Statistical accuracy: $\sigma(\Delta m_s) = 0.006 \text{ ps}^{-1}$

Note: Sensitivity will be limited by systematics.

Time-dependent CP asymmetries in $B_s \rightarrow J/\Psi \phi$

For $B_s \rightarrow J/\Psi \phi$:

$$\mathbf{A}_{\mathrm{CP}} \ = \ \frac{\Gamma(\bar{\mathbf{B}}_{s} \to J/\Psi \ \phi) - \Gamma(\mathbf{B}_{s} \to J/\Psi \ \phi)}{\Gamma(\bar{\mathbf{B}}_{s} \to J/\Psi \ \phi) + \Gamma(\mathbf{B}_{s} \to J/\Psi \ \phi)}$$

Note that

• $J/\Psi \phi$ final state composed of CP-even and CP-odd states:

$$rac{d\Gamma}{dc} \propto \left[\left| \mathrm{A}_0
ight|^2 + \left| \mathrm{A}_\parallel
ight|^2
ight] rac{3}{8} (1+c^2) + \left| \mathrm{A}_\perp
ight|^2 rac{3}{4} (1-c^2)$$

with $c=\cos\Theta_{\rm tr}$, A_{\parallel} , A_0 the CP-even components and A_{\perp} the CP-even component. Separate components with $\Theta_{\rm tr}$ angle analysis:

CP-violation in the decay $B_s \to \phi \phi$

- angular analysis determines CP-even/odd components
- 2 Kaon pairs observe
 Bose-statistics: treat them symmetrically

Propertime Resolution:

In 1 year of LHCb running:

Yield: 3.1k Events, B/S < 0.8, $\sigma(\phi_s) = 0.11$

Experimental Challenge

- $b\bar{b}$ production cross section: $\sigma(b\bar{b})=500\mu b$
- separate K from π : at LHCb 7× more π as Kaons
- flight distance of B_s meson ($c\tau = 439 \mu m$): $\sim 1 \text{ cm}$
- B_s oscillation frequency: $\Delta m_s = 17.8 ps^{-1}$

Experimental Challenges(II)

The LHCb Spectrometer

Trigger:

- 1MHz Level 0 trigger
- 2kHz logging rate

LHCb Sensitivity to ϕ_s

Physics input:

$\phi_s[\mathrm{rad}]$	$\Delta M_s[ps^{-1}]$	$\Delta\Gamma_s/\Gamma_s$	$\tau_{\rm B_s^0}[{\rm ps}]$	R_T
-0.04	17.5	0.15	1.45	0.2

Results from fit to Toy MC data:

Sensitivity	$J\!/\Psi~\eta(\gamma\gamma)$	$J/\Psi \eta(3\pi)$	$\eta_{oldsymbol{c}}\phi$	$J/\Psi \phi$
$\sigma(\mathrm{B}_s)[\mathrm{MeV/c}]$	34	20	12	14
$\Delta\Gamma_{s}/\Gamma_{s}$	0.016	0.019	0.018	0.0079

Channel	$\sigma(\phi_s)[rad]$	Weight $(\sigma/\sigma_i)^2$ [%]
$B_s o J/\eta(3\pi)$	0.14	2.3
$\mathrm{B}_{s} ightarrow \mathrm{D}_{s} \mathrm{D}_{s}$	0.13	2.6
$\mathrm{B}_{s} o J/\!\eta(\gamma\gamma)$	0.11	3.9
$\mathrm{B}_{m{s}} ightarrow \eta_{m{c}} \phi$	0.11	3.9
Combined sensitivity:	0.06	12.7
$B_s o J/\Psi \ \phi$	0.023	87.3
Total combined sensitivity:	0.022	100.0

LHCb Sensitivity to ϕ_s

- $B_s \rightarrow J/\Psi \phi$:
 - $\sigma(\phi_s)=0.023$ rad

$$\sigma(\Delta\Gamma_s/\Gamma_s) = 0.0092$$

- including decays into CP-eigen states:
 - relative weight \sim 13%
 - $\sigma(\phi_s) = 0.021$
- constraint on NP:
 - σ_s: phase due to supersymmetry
 - h_s: scale of obse<u>rvable</u>

Conclusions

- SM picture of CP violation incomplete → NP needed
- LHCb experiment capable of constraining possible NP
- measurements of CP observables constrain scale of new phases
- ϕ_s from $B_s \rightarrow J/\Psi \phi$ yields $\sigma_\phi = 0.022$ in 2 fb⁻¹
- $\sigma(\phi_s)$ from $B_s \to \phi \phi = 0.11$
- improve limits on σ_s , h_s by factor ~ 10

