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Abstract. An approach towards a statistical survey of four dimensional supersymmetric vacua
in the string theory landscape is described and illustrated with three examples of ensembles of
intersecting D—brane models. The question whether it is conceivable to make predictions based on
statistical distributions is discussed. Especially interesting in this context are possible correlations
between low energy observables. As an example we look at correlations between properties of the
gauge sector of intersecting D—brane models and Gepner model constructions.
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1 Introduction

As has been known for quite a while but only more
widely discussed recently [1], string theory provides
us with an extremely large number of effective four
dimensional theories. The main reason for this lies in
the abundance of different ways how to compactify the
theory from ten to four dimensions. This procedure
is by no means unique and produces massless moduli
fields in the effective theory. One way to introduce a
potential for these moduli and thereby fix their values
is the use of background fluxes (for a recent review
in the context of intersecting brane models see [2]),
but even after using this method we are left with an
abundance of possibilities.

Facing such a huge number of possible low energy
theories, we have to answer the question why exactly
the (supersymmetric) standard model is realised in
nature. One certainly has to try to identify a selec-
tion mechanism within string theory that singles out a
particular solution (e.g. based on the minimisation of
entropy) or one has to face the possibility of retreating
to anthropic reasoning.

However, it might be possible to extract some use-
ful information from a statistical analysis of solutions
by searching for common properties within ensembles
of models at different points in the landscape. This
might give valuable hints for model building by ex-
cluding or highlighting regions of the parameter space.

Moreover, looking for correlations between low en-
ergy observables might be an interesting possibility |3,
4]. If found, these correlations could not only teach
us some lessons about the general behaviour of string
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theory models and help to identify underlying prin-
ciples, but they might even lead to concrete results.
If it should turn out that certain correlations exist in
a wide variety of models, one could conjecture them
to be true in general and thereby obtaining testable
predictions for experiment.

Besides these interesting, desired correlations, we
have to take a different type of unwanted correlations
into account as well [5]. In the analysis of ensembles of
models it can be desirable or even necessary to infer
from the properties of a particular subset of models to
the distribution of these features in the whole class. In
the simplest case these subsets are randomly chosen,
but most of the time one has no other choice then to
introduce a bias on the basis of which models are feasi-
ble to calculate. In this case one has to be very careful
not to run into unwanted correlations. Concretely, the
expectation value of the statistical distribution might
explicitly depend on the choice function.

How should one proceed to obtain statistical data
on string compactifications? There are basically two
routes one could follow. One of them relies on a true
statistical approach, using an approximated measure
for the space of models [6]. The other one uses ensem-
bles of explicitly calculated models at specific points
in the landscape to compute frequency distributions of
their properties, which eventually can be extrapolated
to a wider class of compactifications. This is the ap-
proach followed here, in particular we will consider fre-
quency distributions of properties of intersecting brane
models [3,7-10]. Other corners of the landscape that
have been studied using a similar method include Gep-
ner models [11,12], which we will use later to compare
results on correlations, and orbifold compactifications
of heterotic string theory [13].
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2 Intersecting brane models

We will work with simple orientifold models of type
ITA, compactified on toroidal orbifold backgrounds and
equipped with D6-branes at angles [14]. These models
have been studied in great detail over the last years
and are still being used for phenomenological model
building [15]. However, to be able to study large quan-
tities of different constructions (or even all possible
models in a given background), some important points
will not be taken into account. One of them is the ques-
tion of moduli stabilisation, in particular the inclusion
of background fluxes, another one are contributions
of non—perturbative effects, such as instanton correc-
tions. We believe however, that the frequency distribu-
tions obtained in this simplified setup can be used as a
basis for a refined analysis and most of their properties
are not going to change qualitatively.

Specifically, the backgrounds we consider are of the
form

RS x M, M=TC°/G, G €{ZyxZs,Zs,Z§},

where Zg and Zj denote two different embeddings of
the group action into the torus—lattice. The orientifold
projection consists of dividing out worldsheet parity,
accompanied by a reflection along three of the torus
axes in space—time. This introduces topological de-
fects, which are described by orientifold O6—planes
that carry tension and are charged under the RR-
seven—form.

To account for the tadpoles introduced by the O6—
planes, one introduces D6-branes in the background,
which are space—time filling and wrap, as the orien-
tifold planes, Lagrangian three—cycles in the compact
space. These cycles can be parametrised using a basis
of H3(M,Z). Tt can be split into one part that comes
from those torus cycles that survive the projections
(called bulk cycles in the following) and another part
that is due to the existence of exceptional cycles at the
fixed points of the orbifold action, which are related to
the possible blow—up modes.

For the three geometries under consideration the
situation is rather different. In the case of T /(ZoxZs),
we do not have exceptional cycles, such that the basis
consists of torus cycles only. In the other two cases
exceptional cycles do exist and combine with the torus
cycles to fractional cycles. The existence of exceptional
cycles makes a huge difference for the statistics, as we
will see below.

Not every possible background will lead to a valid
model. In order to obtain consistent compactifications,
there are several consistency conditions that have to
be fulfilled. Two of them have already been alluded to,
namely the cancellation of tadpoles coming from the
RR—seven—form, which reads in homology

Z N, (mq + 7)) = Lmoe, (1)

where 7 are the three—cycles wrapped by the brane
a, it’s orientifold mirror a’ and the O6-planes. L de-
notes the orientifold charge and the sum runs over all

stacks of D6-branes in the model, each consisting of IV,
branes. For a background with third Betti number b3
there are b3/2 such conditions. Moreover, since we are
looking for supersymmetric models in four dimensions,
which leads to the constraint that all three—cycles have
to be special Lagrangian, we have to impose the con-
dition that the calibration form (23 vanishes when re-
stricted to the three-cycle. Additionally anti-branes
should be excluded from the spectrum, leading to the
condition that the real part of {25 has to be positive,

Im(23|ﬂ =0, Ref2;3 > 0. (2)
One last constraint comes from K-theory and can be
formulated in our setup as a condition on intersections
between all brane stacks and some orientifold invariant
probe-branes,

Z NoTg © Tprobe = 0 mod 2. (3)

More details on the different geometries, consis-
tency conditions and brane embeddings can be found
in the respective papers [3,9,10].

Each stack of N branes carries a gauge group G(N)
on it’s worldvolume, where G € {U, Sp, SO}, depend-
ing on whether the three—cycle it wraps coincides with
the orientifold plane. Matter arises at the intersection
of brane stacks and their orientifold mirrors. One can
distinguish between chiral and non-chiral multiplets
and compute their multiplicities in terms of the in-
tersection numbers between the relevant cycles. For
two stacks a and b with N, and N, branes we ob-
tain chiral matter in the bifundamental representation
(Na, Ny, ) with multiplicity I, = 7407, and in the rep-
resentation (N, Np) with multiplicity o, = mq o 7}
In a similar manner one can compute the non—chiral
multiplets [9]. Moreover, each brane might contribute
matter in the adjoint, symmetric and antisymmetric
representations of the gauge group G(N,).

3 Statistical distributions

To evaluate the models described in the last section
statistically, large ensembles of solutions to the con-
straints (1), (2) and (3) can be generated using com-
puter algorithms, thereby making use of the fact that
after the introduction of a suitable basis one can ex-
press everything in terms of integer valued algebraic
equations.

A complication that arises at this point is that the
problem of classifying all possible solutions to the sys-
tem of equations is NP—complete [16]. However, the
number of solutions can be shown to be finite, so it de-
pends on particular problem whether it is possible to
find all possible solutions within reasonable timescales.
In the case of Zg this is indeed possible, because the
set of bulk cycles is very restricted. For the other two
backgrounds under consideration an explicit construc-
tion of the full space of solutions cannot be achieved,
which makes it necessary to impose a restriction to a
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Fig. 1. Distributions of the probability to find a single gauge group factor of rank N in the full ensemble of intersecting
brane models on T /(ZaxZ2) (left), T°/Zs (middle) and T°/Z§ (right).

subset of models. From the properties of the subsets
one can then deduce the frequency distributions for
the full set of solutions.

The subsets have to be chosen in such a way that
no unwanted bias is introduced that would distort the
statistical distributions. In the case of T°/(ZayxZs) we
have used a cut—off on the space of the real part of the
complex structure which is one of the free parameters.
In this way some interesting models are not captured
by the analysis, but the resulting set of solutions is
large enough to obtain valid statistical distributions'.
For the T°/Zg background a different method has been
used, namely a restriction to several randomly gener-
ated subsets of models, that have been tested after-
wards to make sure that they do not suffer from un-
wanted correlations.

The total number of solutions is quite different for
the three cases at hand. For T°/(Zq x Z3) there are
0O(10'%) models and in the case of T¢/Zg and T°/Zj
we find O(10%8) and O(1023) solutions, respectively.
The huge differences, in particular between the first
and the latter two backgrounds, is due to the effect
of exceptional branes. One can show that the tadpole
constraints (1) split into a bulk part and an exceptional
part, such that one can treat the two sets of cycles in-
dependently. Each bulk brane can be combined with
one of n, = 27 different possible exceptional branes
to form a fractional cycle, but not all of them fulfil
the consistency conditions, such that the number of
possibilities n. is reduced. For a model with k stacks
this amounts to n¥ combinations. Not all of these lead
to consistent models, but the restrictions from the ex-
ceptional part of the tadpole equations are only poly-
nomial, leading to an exponential enhancement of the
space of solutions.

As an example for the frequency distribution of
gauge sector properties, we will take the probability to
find a semi—simple gauge factor of rank N within one
model. Combining the probability of several gauge fac-

1 If one restricts the survey to models with certain prop-
erties, e.g. specific gauge groups, or fixes the number of
brane stacks, statements about the full set of solutions are
possible [8].

tors, one can estimate the frequency of certain gauge
groups, such as the one of the standard model, for ex-
ample. As one can see clearly from the distributions
for the three geometries (Fig. 1), the T°/(ZaxZs) orb-
ifold differs quite dramatically from the other two ge-
ometries. This is again an effect of the contribution
of exceptional cycles, which can be quantified in this
case.

For T /(Zs x Zs) the distribution for an ensemble
of models with given number of stacks is proportional
to L*/N? [8]. Including a sum over all possible stack
sizes k and, in the case of models with exceptional
stacks, the exponential enhancement factor n(k), all
three distributions can be approximated by

L+1-N
P(N) =~
k=1

4
Lk
N2'e

(4)

where n. = 1 for models without exceptional cycles.
In the case of T%/(Zy xZs) we obtain (L + 1)L*/N? —
L*/N, while for the two embeddings of Zg we find

LA N2,

4 Correlations

As mentioned in the introduction, the most promising
route to obtain results that may give rise to testable
predictions is to look for correlations between low en-
ergy observables.

In the following we will consider only one simple ex-
ample of correlations between properties of the gauge
sector to show how this might be done in practise, but
certainly many more possibilities could be considered?.

Within the ensemble of models described above, for
each pair of branes a and b, we always obtain a pair
of chiral matter in the bifundamental representation
of the two gauge group factors, coming from the inter-
section of the two branes and the intersection of one
brane with the orientifold mirror of the other one. One

2 This section contains some preliminary results of work
in progress with Tim Dijkstra.
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Fig. 2. Normalised frequency distribution of intersection numbers A%, as defined by (5), for Gepner models (left) and
intersecting brane models on T°/(Z2xZ2) (middle) and T°/Zg (right). The small inserts show the pattern that emerges
from randomly generated intersections using the same set of branes.

can define the two quantities

Ai = |Iab =+ Iab/|7 (5)

invariant under the exchange of branes and the orien-
tifold action, that describe the net amount of chiral
matter for one particular brane.

We will use these two quantities as an example of
how a correlation can arise in the construction, and
therefore in the amount of chiral matter that shows
up in the effective theory. To show that this effect does
not depend on the specific geometry, we compare the
analysis of the correlation pattern between intersect-
ing brane models on T°/(Zy x Z3) and T%/Zg with a
similar analysis of Gepner model constructions [12].
To see how far the actual distribution diverges from
a generic match of branes, we use a distribution with
randomly generated pairings within the set of branes
of the model under consideration.

Although the distributions (Fig. 2) are quite dif-
ferent quantitatively, at a qualitative level the distri-
bution of intersection numbers is very similar for the
intersecting brane models and the Gepner model con-
structions. In particular the tendency towards either
identical or rather distant values for A% is common in
all three distributions. This is quite remarkable, since
one has to keep in mind that the Gepner models are
not only located at a different point in moduli space,
but the ensemble considered here consists of a sample
of several thousand different Gepner models, all corre-
sponding to different backgrounds, of which only very
few have even a geometrical interpretation.

The fact that the distribution for T /(ZyxZs) looks
a bit blurred, can be traced back to the fact that the
ensemble under consideration has been cut off at high
values of the complex structure modulus, as explained
above. In the case of T°/Zg we are considering a ran-
dom subset of models that include also exceptional
branes, which makes the ensemble exponentially larger
and at the same time reduces the number of possible
values for intersections [9)].
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