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Introduction

• The mechanism of the electroweak symmetry 
breaking (EWSB) is currently the most prominent 
question in paricle physics.

• Because of the hierarchy problem of the Standard 
Model (SM) Higgs sector, it’s widely believe that 
new physics should appear at the TeV scale.

• LHC is expected to fully explore the TeV scale and 
address the origin of EWSB. We need to be ready 
for any possibility that LHC will present to us.



Introduction

• Supersymmetry (SUSY) has been the leading 
candidate for physics beyond the SM. However, 
there have been a lot of progresses in alternative 
theories in recent years based on new ideas such as 
extra dimensions (flat, warped, or deconstructed), 
collective symmetry breaking (little Higgs 
mechanism). They allow us to construct new models 
or revive old ideas, calculate or estimate theoretical 
predictions, and finding new ways to satisfy 
experimental constraints.



Introduction

Challenges for alternative theories:

• Theoretical consistency and predictivity: 
Alternative theories often based on strong 
dynamics. How can we make claims and 
predictions with confidence?

• Experimental constraints: LEP,  Tevatron and 
other low energy experiments have put 
stringent constraints on possible new physics 
beyond the Standard Model. How can we 
construct models which satify these constraints.



Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02758 ± 0.00035 0.02768
mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1875
ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4957
σhad [nb]σ0 41.540 ± 0.037 41.477
RlRl 20.767 ± 0.025 20.744
AfbA0,l 0.01714 ± 0.00095 0.01645
Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481
RbRb 0.21629 ± 0.00066 0.21586
RcRc 0.1721 ± 0.0030 0.1722
AfbA0,b 0.0992 ± 0.0016 0.1038
AfbA0,c 0.0707 ± 0.0035 0.0742
AbAb 0.923 ± 0.020 0.935
AcAc 0.670 ± 0.027 0.668
Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481
sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314
mW [GeV]mW [GeV] 80.398 ± 0.025 80.374
ΓW [GeV]ΓW [GeV] 2.140 ± 0.060 2.091
mt [GeV]mt [GeV] 170.9 ± 1.8 171.3

Electroweak Precision Fit

0

1

2

3

4

5

6

10030 300

mH [GeV]

∆χ
2

Excluded Preliminary

∆αhad =∆α(5)

0.02758±0.00035
0.02749±0.00012
incl. low Q2 data

Theory uncertainty
mLimit = 144 GeV



Categories (basesd on the Higgs sector)

• (Naturally) light (composite) Higgs: Higgs is light 
because of a (shift) symmetry. E.g., Higgs as a 
PNGB or A5.

• Heavy (composite) Higgs: No symmetry to protect 
the Higgs mass, so it’s heavy unless by fine-tuning. 
E.g., top condensate models, RS 1.

• No Higgs: WL WL scattering is unitarized by some 
other states. E.g., Technicolor, Higgsless models.



Categories (basesd on the Higgs sector)

• The model space is continuous. There are 
scenarios interpolating among these categories.

• Different models often share some similar features 
and face similar challenges. It would be desirable 
to describe them and understand them in some 
universal way (at least for LHC phenomenology).

Higgsless

Technicolor

Randall-Sundrum 1

Holographic PNGB Higgs

Little Higgs

...



Light Higgs Scenarios

The idea that a light Higgs is a PNGB (Georgi-Kaplan 

‘85) or A5 (Fairlie ‘79, Manton ‘79, Hosotani ‘83) have been 
around for a long time. 

Recent new models:

• Little Higgs models (Arkani-Hamed, Cohen, Georgi, ...)

• Gauge-Higgs unification based on flat or warped 
extra dimensions (Dvali, Randjbar-Daemi, Tabbash, and 
many others...)

• Twin Higgs models (Chacko, Goh, Harnik,...)



Little Higgs Theories
• Higgs field(s) are pseudo-Nambu-Goldstone 

bosons (PNGBs) of a spontaneouly broken global 
symmetry G     H.

• G is explicitly broken by 2 sets of interactions (for 
example, by gauging some subgroup F), with each 
set preserving a subset of the symmetry. The Higgs 
is an exact NGB when either set of the couplings is 
absent.

• Higgs mass is protected from one-loop quadratic 
divergence so that the cutoff can be pushed up to 
~10 TeV.

Little Higgs theories

Higgs arises as a pseudo-Nambu-Goldstone bo-

son (PNGB) of a spontaneously broken global

symmetry, G → H, with a special property that

its mass is protected from one-loop quadratic

divergences induced by the explicit symmetry

breaking couplings.

The global symmetry is explicitly broken by 2

sets of interactions, with each set preserving a

subset of the symmetry.

L = L0 + λ1L1 + λ2L2

The Higgs is an exact NGB when either set of

couplings is absent.
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Little Higgs Theories

• The quadratic divergences are cancelled by new 
particles which are partners of the SM top quark, 
gauge bosons and Higgs. Unlike SUSY, they have 
the same spins as the SM particles.

One-loop quadratic divergences are canceled

by new particles at the TeV scale with the same

spins as the corresponding SM particles.

t
H H

t

T

H H
T

H H

W, Z, γ

H H

WH, ZH, AH

H H

H

H H

φ, S

H H

mWH
∼ gf, mT ∼ λtf, . . . , f ∼ 1 TeV, Λ ∼ 4πf

Relations among couplings are ensured by non-

linearly realized (approximate) global symme-

try.

Generic spectrum for little Higgs theories:

100 GeV

f ∼ 1 TeV

Λ ∼ 4πf ∼ 10 TeV

SM with 1 or 2

Higgs Doublets

T, WH, ZH, AH,

singlet/doublet/triplet

scalars

UV cutoff

UV completion

⇑



Gauge-Higgs Unification
• A larger bulk gauge symmetry (containing the SM) 

in extra dimensions is broken (down to SM) by 
boundary conditions.

• Higgs is identified with the extra component of 
the bulk gauge fields, and hence its mass is 
protected by the bulk gauge symmetry.

• In the case of warped extra dimension, it has a 4D 
dual description that the Higgs arises as the PNGB 
of a spontaneously broken global symmetry of the 
strongly coupled CFT. (Holographic PNGB Higgs, Contino, 
Nomura, Pomarol, ‘03)
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It is now straightforward to see how Eq. (12) can interpolate between the three different theories
mentioned above. If we take the gm gauge coupling to infinity, then we can integrate out the ultra-massive
SU(3)m gauge bosons. If we ignore the mechanism for generating the Higgs quartic, then this yields the
correct gauge structure for the Minimal Moose:

Global : SU(3) SU(3)!"#$%&'( !!

Σ !"#$%&'(
Gauged : SU(2)1 SU(2)2

(14)

where
Σ = Σ1Σ2. (15)

The Minimal Moose exhibits a collective symmetry breaking structure, in that both g1 and g2 must be
non-zero for the Higgs boson in Σ to get a radiative potential from gauge loops.

If we take the g1 and g2 gauge couplings to infinity, then we can integrate out the ultra-massive SU(2)i
gauge bosons. This will yield the Simple Group little Higgs. In order to see this, recall from Eq. (8), that
in the little technicolor or hidden local symmetry construction, the moose

Global : SU(3) SU(3)!"#$%&'( !! !"#$%&'(
Gauged : SU(2)ρ

(16)

turns into a SU(3)/SU(2) nonlinear sigma model when the SU(2)ρ gauge boson is integrated out. There-
fore, when the SU(2)i gauge bosons are integrated out, we get a theory without an obvious moose descrip-
tion:

(SU(3)/SU(2))2 NLΣM with SU(3)V gauged (17)

which is indeed the Simple Group theory. Unlike the Minimal Moose, this theory does not exhibit ordinary
collective symmetry breaking. However, the Higgs potential is not quadratically divergent because both
f1 and f2 must be nonzero for the Higgs boson not to be eaten.

Finally, Eq. (12) can turn into the Original Holographic Higgs if we take f1 > f2. To see this, note
that Eq. (12) can be thought of as the three-site deconstruction of a warped extra dimension with bulk
gauge fields and appropriate boundary conditions:

SU(2) SU(2)

Bulk

IR BraneUV Brane

SU(3)

(18)

The warp factor is reflected in the different pion decay constants on the links [ref?], so there is no natural
T -parity limit in this case. The Original Holographic Higgs exhibits AdS/CFT collective breaking, in the
sense that both the IR brane and UV brane boundary conditions must violate the bulk SU(3) symmetry



A Unified Approach: Little M-theory

• Almost all little Higgs models are either based on 
moose diagrams or can be converted into moose 
models using CCWZ.

• Extra dimensional models can be converted into 
moose models by deconstruction.

• Many different models can be represented by the 
same moose diagram at low energies. 

[20], and a known AdS5 construction [21] that superficially does not look like a little Higgs

theory (but really is). We return briefly to AdS space in section 4 to show how “integrat-

ing in” the IR brane can turn holographic composite Higgs models into brane-localized little

Higgs theories. We comment on vacuum alignment issues in section 5, and we conclude with

some outstanding questions about more general little Higgs theories and speculations on the

Wess-Zumino-Witten term [22, 23].

2. From AdS/CFT to QCD via CCWZ and HLS

The starting point for our analysis is the AdS/CFT correspondence [24, 25, 26] and its

phenomenological interpretation [27, 28]. There is a straightforward way to construct the

AdS dual of a CFT that yields a G/H nonlinear sigma model at low energies and where a

subgroup F ⊂ G is gauged: simply consider a slice of AdS5 [29] with bulk G gauge bosons

where the gauge symmetry is reduced to F on the UV brane and H on the IR brane [21]:

Bulk
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U
V
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e

CFT with global G symmetry
+

F ⊂ G gauged
+

G/H symmetry breaking

⇐⇒
Dual

(2.1)

This construction was studied in the context of the littlest Higgs in [30]. In this paper, we

take the obvious next step and deconstruct the warped dimension [31]. The link fields in

the moose are the Wilson lines constructed out of A5, and the warp factor is reflected in the

different decay constants on the links [32]:

Global : G G G G

!"#$%&'( !! !"#$%&'( !! · · · !! !"#$%&'( !! !"#$%&'(

Gauged : F G G H

(2.2)

Going to the extreme where we only introduce sites corresponding the UV and IR branes,

we arrive at a moose diagram which at low energies is supposed to describe a G/H nonlinear

sigma model with F ⊂ G gauged:

Global : G G

!"#$%&'( !!

ξ
!"#$%&'(

Gauged : F H

(2.3)
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HC, Thaler, Wang,  hep-ph/0607205



For example, the moose diagram                                  

can describe several very different looking models by 
taking various limits.

• Simple little Higgs:

• Minimal moose: 

• Holographic PNGB Higgs

Little M-theory 7

diagram, and in certain cases, one can interpolate between different models by taking different limits of
the same M-theory. In this subsection, we will show how this interpolation works in a toy little M-theory
without hypercharge or fermions.

This toy model is based on the coset space SU(3)/SU(2). In particular, imagine a triplet of a global
SU(3) that takes a vev.

Φ = eiΠ/f




0
0
f



 (10)

The SU(3)/SU(2) goldstone matrix contains a doublet h and a singlet η under the unbroken SU(2).

Π =
1√
2




0 0 h1

0 0 h2

h†
1 h†

2 0



 +
1
4




η 0 0
0 η 0
0 0 −2η



 (11)

There are at least three theories based on this coset space, namely the Simple Group Little Higgs [19], the
Minimal Moose Little Higgs [20], and the Original Holographic Higgs [7]. As we will see, they can all be
described by the same three-site M-theory. Further variations are discussed in [15].

At first, it seems implausible that these three theories could arise as different limits of the same theory
because they all have different fundamental gauge symmetries. The Minimal Moose is based on gauging a
product group SU(2)×SU(2), the Simple Group has the simple group SU(3) gauged, whereas the Original
Holographic Higgs is dual to a CFT with a single copy of SU(2) gauged. How can these theories come
from the same M-theory if they have different gauge structures?

The point is that for LHC phenomenology, we only require the low energy degrees of freedom of the
three theories to be the same, and indeed, immediately above the electroweak symmetry breaking scale
all three theories have only massless SU(2) gauge bosons. The heavy gauge fields will appear at the
LHC as new heavy spin-1 modes, and in the spirit of Abbott-Fahri, to first approximation we are free to
interpret these heavy modes as either gauge bosons that get a mass via spontaneous symmetry breaking
or resonances from some strong dynamics. The little M-theory description will include an SU(3)×SU(2)s
worth of massive gauge bosons, but we can decouple any of the modes that are irrelevant by changing some
appropriate gauge couplings.

The toy SU(3)/SU(2) little M-theory can be described by the following moose diagram:

Global : SU(3) SU(3) SU(3)!"#$%&'( !!

Σ1 !"#$%&'( !!

Σ2 !"#$%&'(
Gauged : SU(2)1 SU(3)m SU(2)2

(12)

In unitary gauge, an SU(3) × SU(2)s worth of Goldstone are eaten, yielding SU(3) × SU(2) massive
gauge bosons and massless SU(2) gauge bosons. The link fields are parametrized in terms of the uneaten
Goldstones as

Σ1 = eiΠ/f1 , Σ2 = eiΠ/f2 . (13)

The T -parity limit of this theory is achieved when the gauge couplings g1 and g2 and the decay constants
f1 and f2 are taken to be equal. g1,2 of SU(2)1,2 →∞

gm of SU(3)m →∞

Little M-theory 8

It is now straightforward to see how Eq. (12) can interpolate between the three different theories
mentioned above. If we take the gm gauge coupling to infinity, then we can integrate out the ultra-massive
SU(3)m gauge bosons. If we ignore the mechanism for generating the Higgs quartic, then this yields the
correct gauge structure for the Minimal Moose:

Global : SU(3) SU(3)!"#$%&'( !!

Σ !"#$%&'(
Gauged : SU(2)1 SU(2)2

(14)

where
Σ = Σ1Σ2. (15)

The Minimal Moose exhibits a collective symmetry breaking structure, in that both g1 and g2 must be
non-zero for the Higgs boson in Σ to get a radiative potential from gauge loops.

If we take the g1 and g2 gauge couplings to infinity, then we can integrate out the ultra-massive SU(2)i
gauge bosons. This will yield the Simple Group little Higgs. In order to see this, recall from Eq. (8), that
in the little technicolor or hidden local symmetry construction, the moose

Global : SU(3) SU(3)!"#$%&'( !! !"#$%&'(
Gauged : SU(2)ρ

(16)

turns into a SU(3)/SU(2) nonlinear sigma model when the SU(2)ρ gauge boson is integrated out. There-
fore, when the SU(2)i gauge bosons are integrated out, we get a theory without an obvious moose descrip-
tion:

(SU(3)/SU(2))2 NLΣM with SU(3)V gauged (17)

which is indeed the Simple Group theory. Unlike the Minimal Moose, this theory does not exhibit ordinary
collective symmetry breaking. However, the Higgs potential is not quadratically divergent because both
f1 and f2 must be nonzero for the Higgs boson not to be eaten.

Finally, Eq. (12) can turn into the Original Holographic Higgs if we take f1 > f2. To see this, note
that Eq. (12) can be thought of as the three-site deconstruction of a warped extra dimension with bulk
gauge fields and appropriate boundary conditions:

SU(2) SU(2)

Bulk

IR BraneUV Brane

SU(3)

(18)

The warp factor is reflected in the different pion decay constants on the links [ref?], so there is no natural
T -parity limit in this case. The Original Holographic Higgs exhibits AdS/CFT collective breaking, in the
sense that both the IR brane and UV brane boundary conditions must violate the bulk SU(3) symmetry

The middle site can be integrated out.
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Arkani-Hamed et al, hep-ph/0206020

Kaplan & Schmaltz, hep-ph/0302049

Contino, Nomura & Pomarol, hep-ph/0306259



Electroweak Constraints
• Electroweak precision data put strong constraints 

on any TeV scale models. 

• New particles at the TeV scale can induce too 
large corrections to the electroweak observables.

• Strongest constraints come from S, T, 4-fermion 
interactions (W and Y in Barbieri, Pomarol, Rattazzi, Strumia, 

hep/ph/0405040) , and             .

1. Operators that violate the (approximate)

symmetries of the SM, e.g., baryon num-

ber, flavor, CP, are strongly constrained.

⇒ New physics at ∼ 1 TeV should also

(approximately) respect these symmetries.

2. Operators that do not violate the SM sym-

metries are also constrained by the preci-

sion electroweak measurements.

Dimension six operator ci = −1 ci = +1

OWB = (H+σaH)W a
µνBµν 9.0 13

OH = |H+DµH)|2 4.2 7.0

OLL = 1
2
(L̄γµσaL)2 8.2 8.8

OHL = i(H+DµH)(L̄γµL) 14 8.0

(Barbieri and Strumia ’00)

No evidence for new physics has been found

up to ∼ 10 TeV (assuming ci ∼ O(1)).

Z → bb̄



Electroweak Constraints
• To avoid large corrections to T, the model should 

contain a custodial symmatry SU(2)L x SU(2)R.

• S and 4-fermion interactions can be reduced by 
raising the masses of the TeV-scale particles (for 
the price of more fine-tuning), or reducing the 
couplings between SM fermions and the new TeV 
scale particles.

For example, in many little Higgs models one can 
impose a T-parity (Cheng & Low) which forbids 
couplings between the SM fermions and TeV scale 
particles.  (Recently Hill & Hill (‘07) showed that T-parity is can 
be broken by WZW terms. However, it’s a UV completion 
question. One can easily find UV-complete theories in which T-
parity is exact.)



Low-energy Effective Lagrangian for a 
Strongly-Interacting Light Higgs (SILH)

• The strongly coupled sector can be characterized by 
2 parameters,

• Integrating out the strong sector, the low-energy 
effective Lagrangian can be expressed in terms of the 
expansions,         and 

• The higher-dimensional operators can be divided into

• Genuine strong operators (sensitive to the scale f) 

• Form factor operators (sensitive to the scale      )

gρ(! gSM ), mρ, with mρ = gρf.

Giudice, Grojean, Pomarol, Rattazzi, hep-ph/0703164

H/f ∂/mρ.

mρ



SILH Effective Lagrangian

cH and cy are the most important ones for LHC studies

- Genuine strong operators:derivatives, we obtain that eq. (6) describes the following leading (dimension-6) interactions

cH

2f 2
∂µ

(
H†H

)
∂µ

(
H†H

)
+

cT

2f 2

(
H†←→DµH

)(
H†←→DµH

)
. (7)

Here we have made a Higgs field redefinition Hα → Hα + a(H†H)Hα/f 2 (with a an appro-

priate constant) to write the operator H†H|DµH|2 in terms of the two appearing in eq. (7).

The coefficients cH and cT are fixed by the σ-model structure, up to the overall normalization

which depends on the definition of f . For SO(5)/SO(4) one finds cT /cH = 0, because of

custodial symmetry, and for SU(3)/SU(2) × U(1) one finds cT /cH = 1.

From eqs. (5)–(6) we can deduce the rules to estimate the coefficients of the higher-

dimensional operators in the low-energy effective Lagrangian

1. Each extra Goldstone leg is weighted by a factor 1/f . For instance the addition of two

Higgs doublet legs involves the factor H†H/f 2.

2. Each extra derivative is weighted by a factor 1/mρ. When the SM subgroup is weakly

gauged, the replacement ∂µ → ∂µ + iAµ ≡ Dµ is in order; this same rule implies that

each extra insertion of a gauge field strength Fµν = −i[Dµ, Dν] is weighted by a factor

1/m2
ρ.

The global symmetry G is broken at tree level by the weak gauging of the SM group

and by the weak interactions that underlie the origin of Yukawa terms and Higgs potential.

In sect. 3, we shall present a more detailed analysis of all the various possibilities. For our

present goal we just need to remark that if no new scale other than mρ is present, and simple

expressions of the Goldstone field are involved, one expects these breaking terms to satisfy

the same field and derivative expansions expressed by rules 1 and 2. Basically, the selection

rules of G and of the flavour symmetry of the SM control the overall size of the symmetry

breaking terms, while rules 1 and 2 determine the counting for Higgs field and derivative

insertions. We can thus formulate rule 3:

3. Higher-dimensional operators that violate the symmetry of the σ-model must be sup-

pressed by the same (weak) coupling associated to the corresponding renormalizable

interaction in the SM Lagrangian (e.g., Yukawa couplings yf and quartic Higgs cou-

pling λ).

For instance, the shift Hα → Hα + a(H†H)Hα/f 2 discussed before induces the operators
(

cyyf

f 2
H†Hf̄LHfR + h.c.

)
−

c6λ

f 2

(
H†H

)3
. (8)
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custodial symmetry, and for SU(3)/SU(2) × U(1) one finds cT /cH = 1.

From eqs. (5)–(6) we can deduce the rules to estimate the coefficients of the higher-

dimensional operators in the low-energy effective Lagrangian

1. Each extra Goldstone leg is weighted by a factor 1/f . For instance the addition of two

Higgs doublet legs involves the factor H†H/f 2.
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1/m2
ρ.

The global symmetry G is broken at tree level by the weak gauging of the SM group

and by the weak interactions that underlie the origin of Yukawa terms and Higgs potential.

In sect. 3, we shall present a more detailed analysis of all the various possibilities. For our
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(custodial SU(2) breaking)

     term rescales the Higgs kinetic term after plugging in 
the Higgs vev and modifies the Higgs couplings. 
    Unitarity is not exactly restored by Higgs alone, but 
also the heavy resonances in the strong sector.
This is a model-independent test of the compositeness 
nature of the Higgs.

cH

⇒

- Form factor operators:

equations of motion this term can, however, be rewritten as

1

m2
ρ

[
m2

HHα + λH†HHα + yf(FLfR)α
]2

, (12)

corresponding to effects that are all subleading to more direct corrections from the strong

sector.

For completenes we should also list the dimension-6 operators involving only covariant

derivatives and field strengths

O2W = (DµWµν)
i(DρW

ρν)i O2B = (∂µBµν)(∂ρB
ρν) O2g = (DµGµν)

a(DρG
ρν)a

(13)

O3W = εijkW
i
µ

ν
W j

νρW
k ρµ O3g = fabcG

a
µ

νGb
νρG

c ρµ. (14)

As we show in the appendix A, see eq. (117), the three operators in eq. (13) can be generated

at tree level through the exchange of massive vectors transforming respectively as a weak

triplet, as a singlet and as a color octet. Their coefficients are therefore in general of order

1/(gρmρ)2. The two operators in eq. (14) cannot arise at tree level in minimally-coupled

theories. For instance O3W contributes to the magnetic dipole and to the electric quadrupole

of the W . They are thus generally expected with a coefficient ∼ 1/(4πmρ)2.

2.3 The SILH effective Lagrangian

We now basically have all the ingredients to write down the low-energy dimension-6 effective

Lagrangian. We will work under the assumption of a minimally coupled classical Lagrangian

at the scale mρ.

Using the rules described in sect. 2.2, we obtain a low-energy effective action for the

leading dimension-6 operators involving the Higgs field of the form

LSILH =
cH

2f 2
∂µ

(
H†H

)
∂µ

(
H†H

)
+

cT

2f 2

(
H†←→DµH

)(
H†←→D µH

)

−
c6λ

f 2

(
H†H

)3
+

(
cyyf

f 2
H†Hf̄LHfR + h.c.

)

+
icW g

2m2
ρ

(
H†σi←→DµH

)
(DνWµν)

i +
icBg′

2m2
ρ

(
H†←→DµH

)
(∂νBµν)

+
icHW g

16π2f 2
(DµH)†σi(DνH)W i

µν +
icHBg′

16π2f 2
(DµH)†(DνH)Bµν

+
cγg′2

16π2f 2

g2

g2
ρ

H†HBµνB
µν +

cgg2
S

16π2f 2

y2
t

g2
ρ

H†HGa
µνG

aµν . (15)

9

(fixed by the σ-model structure)
(from both the σ-model structure
and the resonances at mρ)



Heavy Composite (Fat) Higgs

• Higgs is a composite from some strong dynamics, 
but there is no symmetry to keep it light. (It may 
be possible to get a light Higgs by fine-tuning of 
the model parameters.) Old example: top 
condensate and its variations.

• Randall-Sundrum model (RS1) provides an extra-
dimensional dual description of such a scenario 
with a strongly coupled CFT. Higgs localized at (or 
near) the IR brane is interpreted as the bound 
state of the (spontaneously broken) CFT in the 
4D picture.



Randall-Sundrum 1

4D

y = 0 y = πR

Warp factor
(profile of

4D graviton)

H(x)

Figure 17: Localization of 4D graviton and Higgs

where

gind
µν (x) = Gµν(x, φ = π)

= e−2kπRg(0)
µν (x) , (12.2)

gives the induced 4D geometry of the brane, and where the second line gives
the low-energy approximation where only the gravity zero-mode can propa-
gate. In this approximation the Higgs action becomes

SH =

∫
d4x

√
−g(0)

{
e−2kπRgµν

(0)∂µH
†∂νH − e−4kπRλ(|H|2 − v2

0)
2
}

, (12.3)

where the warp factor appears like a conventional constant wavefunction
renormalization of the Higgs. Canonical normalization of the Higgs is achie-
ved by the field redefinition,

e−kπRH → H , (12.4)
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Heavy Composite Higgs

• To satisfy the EW precision constraints and to 
address the fermion mass hierarchy, it’s desirable to 
have gauge fields propagating in the bulk too.

- Bulk gauge group should contains SU(2)L x SU(2)R  
(custodial symmetry of the CFT).

- SM fermion masses may be explained by the 
localizations of the fermions in the extra 
dimension. Light generations are localized toward 
the UV brane (fundamental). (Right-handed) top 
should be localized near the IR brane (composite) 
to accommodate the large top Yukawa coupling.



The localization of a field in the warped extra 
dimension just corresponds to the compositness 
content of the particle in the dual 4D picture 
(UV=more fundamental, IR=more composite).
The 5D zero mode is in general a mixture of a 
fundamental field and the resonances produced 
by the CFT in the dual 4D picture.
The partial compositeness is also not a new 
ideal. It was propose by D. B. Kaplan (1991) as a 
mechanism to generate fermion masses in 
Technicolor theories. (A related idea: Top-seasaw 
mechanism, Dobrescu & Hill, ‘98)



No Higgs Scenario

• Technicolor theories are the original models 
without Higgs. The WL WL scattering is unitarized 
by techni-rhos.

• Warped extra dimensions allows an alternative 
and calculable description of such a scenario -- 
Higgsless models. (Csaki, Grojean, Murayama, Pilo, Terning, ...)

• It’s similar to RS1, except that there is no Higgs. 
Electroweak gauge symmetry is broken by the 
combination of the boundary conditions at the UV 
and IR branes. WL WL scattering is unitarized by 
KK gauge bosons.



SU(2) x U(1)      U(1)
R B!L Y

SU(2) x SU(2)     SU(2)
L R D

SU(2) x SU(2) x U(1)
L R B!L

AdS
5

Planck TeV

Figure 6: The symmetry breaking structure of the warped higgsless model.

of the warping so the BC’s derived for the flat space model will be applicable here as well).
This implies that the gauge fixing term necessary in the warped case is given by

Sgf = −
∫

d4x

∫ R′

R

dz
1

2ξ

R

z

[

∂µAµ − ξ
z

R
∂5

(

R

z
A5

)]2

. (3.49)

Due to the chosen BC’s the A5 fields will have no zero modes they will all again become
massive gauge artifacts and can be eliminated in the unitary gauge. The quadratic piece
of the action for the gauge fields will be then given by

∫

d4x

∫ R′

R

dz
R

z

1

2
Aµ

[(

∂2 − z

R
∂z

(

R

z
∂z

))

ηµν −
(

1 − 1

ξ

)

∂µ∂ν

]

Aν . (3.50)

As before, we go to 4D momentum space by writing Aµ(x, z) = εµ(p)f(z)eip·x. The equation
of motion for the wave function f(z) will then become (p2 = M2):

[

−M2 − z∂5

(

1

z
∂5

)]

f(z) = 0. (3.51)

Equivalently it can be written as

f ′′ − 1

z
f ′ + M2f = 0. (3.52)

This will lead to a Bessel equation for g(z) after the substitution f(z) = zg(z):

g′′ +
1

z
g′ + (M2 − 1

z2
)g = 0, (3.53)

which is a Bessel equation of order 1. The solution is of the form

f(z) = z (AJ1(qkz) + BY1(qkz)) . (3.54)
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5D Higgsless Model in Warped Space

Compactification scale is fixed by the unitarity 
constraint (W’ ~ 1.2 TeV), unlike the case with a Higgs 
where the compactification scale can be raised if one is 
willing to accept more fine-tuning.



• There can be models interpolating between the 
heavy Higgs and Higgsless scenarios: There is a 
Higgs, but unitarization of WL WL scattering is shared 
by the Higgs boson and the KK gauge bosons 
(techni-rhos). 

The couplings between the Higgs boson and SM 
gauge fields (and/or fermions) are reduced --
Gaugephobic Higgs. (Cacciapaglia, Csaki, Marandella, Terning)

Old realizatons: Bosonic Technicolor (Carone & 

Simmons, ‘92), Topcolor assisted Technicolor (Hill ‘94), ...



Electroweak Constraints
• T parameter can be suppressed by a custodial SU(2).

• S parameter is positive (and large) if the SM fermions 
are localized on the UV brane (fundamental), in 
agreement with the estimate in Technicolor models.

- If there is a Higgs, one can push up the KK gauge 
boson masses (the compositeness scale) at the 
expense of more fine-tuning.

- In Higgsless limit, the KK gauge bosons have to be 
around 1 TeV . One can reduce their couplings to 
SM fermions by choosing a near-flat profile in the 
bulk for the light fermions (Cacciapaglia, Csaki, Grojean & 

Terning, ‘04, Foadi, Gopalakrishna & Schmidt, ‘04).



Electroweak Constraints
• To have large enough top Yukawa coupling, top 

quark needs to be near the IR brane.

• In the traditional embedding,                           
under SU(2)L x SU(2)R ,              mixes with KK 
states which transform as (1, 2), which induces 
large correction to             

• A different embedding                          with a 
custodial symmetry                                    can 
solve this problem. (Agashe, Contino, Da Rold, Pomarol ‘06)  
(Loop contributions should still be checked for specific models.)

(tL, bL) ∼ (2, 1)
(tL, bL)

Z → bb̄.

(tL, bL) ∼ (2, 2)
SU(2)L × SU(2)R × PLR
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Summarizing the configuration for zero modes

 

Configuration

UV IR

Gauge bosons
Light fermions

Higgs

LH top and bottom
RH top

RH bottom

IRUV

A Higgsless realization:



Deconstructions
• At energy scales accessible to the LHC, it sufficient 

to approximate these models by a deconstruction 
with only a few sites.

• At lowest truncation, the warped/composite 
phenomenology can be approximated by a two-
site model with one site representing the 
composite sector,  (Contino, Kramer, Son, Sundrum, ‘06, and 

see also Contino’s talk in this conference)        

• A three-site deconstruction of Higgsless model:  
(Chivukula et al ‘06 and see also Belyaev’s talk)            

phenomenology of TeV-scale strong dynamics, with however a tighter connection between
the new states and the resolution of the hierarchy problem. Similarly, our work also shares
some features with the Technicolor “straw man” models of Refs. [38].

The model developed in this paper is the minimal one consistent with the data as well
the central organizing principle of partial compositeness [31]. It is closest to the TeV-scale
physics of the most viable and well-developed minimal warped models [8, 9]. The models of
the forthcoming companion paper additionally incorporate a simple and striking mechanism
for precision gauge-coupling unification [13], with and without a weak-scale dark matter
candidate [14]. Our view is that these models reflect grand principles, worthy of the signif-
icant challenges they pose to experiments, and that they are a good point of departure for
thinking about how to optimize searches. But even if warped compactifications govern TeV
physics in Nature, it is not guaranteed that any of these models is accurate in every detail.
Fortunately, the simplicity of their structure makes them easy to adapt in the face of new
experimental facts.

Recently, similar deconstructed approaches to TeV-scale warped phenomenology have
been taken in Refs. [39, 40]. The present paper has a similar electroweak structure to that
of Ref. [40], but differs considerably in other aspects such as flavor structure.

In the next section, we will give a broad overview of the physics, suppressing technical
details, concluding with an outline of the remainder of the paper.

2 Overview

2.1 Two sectors

Let us sketch the central physics and how it is captured by the two physically equivalent
descriptions: four-dimensional strong dynamics, and higher-dimensional warped compactifi-
cation. We begin with the strong dynamics picture, where the theory is of the form

L = Lelementary + Lcomposite + Lmixing . (1)

There is a sector consisting of weakly-coupled elementary particles, described by Lelementary.
There is a second, strongly interacting sector resulting in a host of tightly bound composite
states, including the Higgs doublet, described by Lcomposite. The elementary sector couplings
are roughly gel ∼ 1. The intra-composite forces holding each composite together are very
strong, while the residual inter-composite couplings, g∗, are assumed to be weaker, 2 but still
significantly stronger than the elementary couplings, 1 < g∗ " 4π. Other than the Higgs
boson, the composites are taken to have typical masses, M∗, of very roughly TeV scale.

2.2 Partial compositeness

These two sectors couple to each other via the interactions of Lmixing, which results primarily
in mass-mixing. Consequently, mass eigenstates are non-trivial superpositions of elementary

2This is characteristic of of gauge theories with large numbers of colors.

3

of hidden local symmetry [39, 40, 41, 42, 43]. Indeed the gauge sector is precisely that of

the BESS model [37]; the new physics discussed here relates to the fermon sector. In the

next section of this paper we briefly describe the model and the limits in which we work.

Section 3 reviews the gauge sector of the model in our notation, including the masses and

wavefunctions of the photon, the nearly-standard light W and Z and the heavier W ′ and

Z ′. Section 4 solves for the masses and wavefunctions of the fermions in the spectrum (a set

of SM-like fermions and heavy copies of those fermions) and implements ideal delocalization

for the light fermions. Sections 5 and 6 explore the couplings of the fermions to the charged

and neutral gauge bosons, respectively. Because the light fermions are ideally delocalized,

they lack couplings to the W ′ and Z ′ – and this minimizes the values of electroweak precision

observables. The top quark, on the other hand, is treated separately in order to provide for its

large mass. The relationship of triple gauge vertices to ideal delocalization and a comparison

of multi-gauge vertices in the three-site model and its continuum limit are discussed in section

7; given the vanishing electroweak corrections and the fermiophobic nature of the W ′ and Z ′,

multi-gauge vertices offer the best prospects for additional experimental constraints on the

three-site model. In sections 8 and 9, the paper moves on to a discussion of αT and the Zbb̄

vertex at one loop. Having established that the heavy fermions must have masses of over 1.8

TeV, we discuss the structure of a low-energy effective theory in which those fermions have

been integrated out. Section 10 presents our conclusions.

2. Three Site Model

The electroweak sector of the three-site

!
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Figure 1: The three site model analyzed in this pa-
per. The solid circles represent SU(2) gauge groups,
with coupling strengths g0 and g1, and the dashed
circle is a U(1) gauge group with coupling g2. The
left-handed fermons, denoted by the lower vertical
lines, are located at sites 0 and 1, and the right-
handed fermions, denoted by the upper vertical
lines, at sites 1 and 2. The dashed green lines corre-
spond to Yukawa couplings, as described in the text.
As discussed below, we will take f1 = f2 =

√
2 v, de-

note g0 = g, g1 = g̃, g2 = g′ and take g̃ " g, g′.

Higgsless model analyzed in this paper is il-

lustrated in figure 1 using “Moose notation”

[26]. The model incorporates an SU(2) ×
SU(2) × U(1) gauge group, and 2 nonlin-

ear (SU(2) × SU(2))/SU(2) sigma models

in which the global symmetry groups in ad-

jacent sigma models are identified with the

corresponding factors of the gauge group.

The symmetry breaking between the mid-

dle SU(2) and the U(1) follows an SU(2)L×
SU(2)R/SU(2)V symmetry breaking pat-

tern with the U(1) embedded as the T3-

generator of SU(2)R. This extended elec-

troweak gauge sector is that of the Breaking

Electroweak Symmetry Strongly (BESS) model

[37].
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Conclusions

• Recent new ideas such as extra dimensions, AdS/CFT 
correspondence, collective symmetry breaking have 
provided us new tools for model building.

- Many new models of electroweak symmetry 
breaking have been built, including little Higgs, fat 
Higgs, Higgsless..., and the model space is 
continuous.

- New and uniform way to understand and 
implement various (old) ideas.

• No single model stands out (due to the tight 
constraints of EW precision data).



!

"

Fine-tuning in parameters

Complication
of models

!!
!

!

!
!
!!

!
!

!
!

!
!

!
!!!!

!

1

Beyond the SM model space



Conclusions

• Given the large number of models, some unified 
approach for LHC phenomenology is desirable. 
This is possible by effective Lagrangian and 
deconstruction. 

• Most of the models predicts new vector particles 
(KK gauge bosons or techi-rhos) and new 
fermions associated with the 3rd generation (and/
or new scalars beyond the Higgs) which can be 
represented by some moose diagrams. If such new 
states are discovered, constructing a moose model 
can be a useful first step towards figuring out the 
underlying theory.


