ffmssmsc – a C++ library for spectrum calculation and renormalization group analysis of the MSSM

Alexei Sheplyakov

Joint Institute for Nuclear Research, Dubna, Russia

SUSY 07 Karlsruhe, July 31, 2007

version 62280538c10d6c10dc318cba720cce4e84306cc3

General information

Science is what we understand well enough to explain to a computer

- Main objectives
 - Given the set of low-energy (SM and QCD) "observables", and model of SUSY breaking, calculate the MSSM Lagrangian parameters.
 - Given the MSSM Lagrangian parameters, calculate physical (pole) masses of superpartners.
- Can be used from C++ and Scheme (a dialect of LISP language).
- Licence GNU General Public Licence (GPL).
- Source code available from the public git repository at http://theor.jinr.ru/~varg/git/hep/ffmssmsc.git

Calculation of physical masses

- calculate running masses using well-known formulae
- add 1-loop radiative corrections (D. Pierce, J. Bagger, K. Matchev, R. Zhang, arXiv:hep-ph/9606211)
- In order to calculate mass spectrum one need to know the values of MSSM Lagrangian parameters.

Problem: RGEs with implicit boundary conditions

- In order to calculate mass spectrum one need to know the values of MSSM Lagrangian parameters.
- Since the nature of SUSY breaking is unknown, there are a lot (~ 100) arbitrary dimensionful couplings.
- In the context of certain models (e.g. minimal supergravity) there are relations between these "soft" couplings at the GUT scale.
- On the other hand, all experimental data are at the electroweak (or even lower) scale.

Implicit boundary conditions, example

In order to evaluate Yukawa coupling of the t quark from the observables, one need to calculate relation between the pole and running masses:

$$rac{\Delta m_t}{m_t} \equiv rac{M_t^{pole} - m_t^{\overline{
m DR}}(ar{\mu})}{m_t^{\overline{
m DR}}(ar{\mu})}$$

- The running masses of superpartners (unknown at this stage of calculation) enter this relation.
- Masses of superpartners depend on "soft" couplings, their values at the EW scale depends on gauge and Yukawa couplings (since β-functions of the "soft" couplings contain gauge and Yukawa ones).
 Gauge and Yukawa coupling are unknown at this stage of the calculation.

- $m_b^{5tl}(M_Z)$, $\alpha_s^{5tl}(M_Z)$, $\alpha_{em}^{5tl}(M_Z)$ $\Rightarrow m_b(M_Z)$, $\alpha_s(M_Z)$, $\alpha_{em}(M_Z)$
- $M_W, M_Z, G_F \Rightarrow g_1(M_Z), g_2(M_Z), v(M_Z)$
- \bullet $M_t \Rightarrow m_t(M_Z)$
- $M_{\tau} \Rightarrow m_{\tau}(M_Z)$

- $m_b^{5fl}(M_Z)$, $\alpha_s^{5fl}(M_Z)$, $\alpha_{em}^{5fl}(M_Z)$ $\Rightarrow m_b(M_Z)$, $\alpha_s(M_Z)$, $\alpha_{em}(M_Z)$ 1-loop MSSM decoupling (D. Pierce, J. Bagger, K. Matchev, R. Zhang, arXiv:hep-ph/9606211)
- $M_W, M_Z, G_F \Rightarrow g_1(M_Z), g_2(M_Z), v(M_Z)$
- \bullet $M_t \Rightarrow m_t(M_Z)$
- $M_{\tau} \Rightarrow m_{\tau}(M_Z)$

- $m_b^{5fl}(M_Z)$, $\alpha_s^{5fl}(M_Z)$, $\alpha_{em}^{5fl}(M_Z)$ $\Rightarrow m_b(M_Z)$, $\alpha_s(M_Z)$, $\alpha_{em}(M_Z)$ 1-loop MSSM decoupling (D. Pierce, J. Bagger, K. Matchev, R. Zhang, arXiv:hep-ph/9606211)
- $M_W, M_Z, G_F \Rightarrow g_1(M_Z), g_2(M_Z), v(M_Z)$ 1-loop MSSM corrections (ρ parameter: also 2-loop SM ones)
- \bullet $M_{\star} \Rightarrow m_{\star}(M_{Z})$
- $M_{\tau} \Rightarrow m_{\tau}(M_Z)$

- $m_b^{5fl}(M_Z)$, $\alpha_s^{5fl}(M_Z)$, $\alpha_{em}^{5fl}(M_Z)$ \Rightarrow $m_b(M_Z)$, $\alpha_s(M_Z)$, $\alpha_{em}(M_Z)$ 1-loop MSSM decoupling (D. Pierce, J. Bagger, K. Matchev, R. Zhang, arXiv:hep-ph/9606211)
- M_W , M_Z , $G_F \Rightarrow g_1(M_Z)$, $g_2(M_Z)$, $v(M_Z)$ 1-loop MSSM corrections (ρ parameter: also 2-loop SM ones)
- $M_t \Rightarrow m_t(M_Z)$ leading 1-loop MSSM corrections, 2-loop SQCD corrections (A. Bednyakov, D.I. Kazakov, AS, arXiv:hep-ph/0507139)
- $M_{\tau} \Rightarrow m_{\tau}(M_Z)$ "leading" 1-loop MSSM corrections $\mathcal{O}(g_2^2 \mu \tan \beta)$

- $m_b^{5fl}(M_Z)$, $\alpha_s^{5fl}(M_Z)$, $\alpha_{em}^{5fl}(M_Z)$ $\Rightarrow m_b(M_Z)$, $\alpha_s(M_Z)$, $\alpha_{em}(M_Z)$ 1-loop MSSM decoupling (D. Pierce, J. Bagger, K. Matchev, R. Zhang, arXiv:hep-ph/9606211)
- $M_W, M_Z, G_F \Rightarrow g_1(M_Z), g_2(M_Z), v(M_Z)$ 1-loop MSSM corrections (ρ parameter: also 2-loop SM ones)
- \bullet $M_t \Rightarrow m_t(M_Z)$ leading 1-loop MSSM corrections, 2-loop SQCD corrections (A. Bednyakov, D.I. Kazakov, AS, arXiv:hep-ph/0507139)
- $M_{\tau} \Rightarrow m_{\tau}(M_Z)$ "leading" 1-loop MSSM corrections $\mathcal{O}(g_2^2 \mu \tan \beta)$

Radiative EW symmetry breaking

- The V.E.Vs of the neutral CP-even Higgs fields satisfy the condition of minimum of the effective potential.
- This condition can be rewritten as a system of nonlinear equations on Higgs mixing parameters μ^2 and m_3^2 .
- 1-loop (D. Pierce, J. Bagger, K. Matchev, R. Zhang, arXiv:hep-ph/9606211) + leading 2-loop corrections $\mathcal{O}(\alpha_s\alpha_{t,b}+\alpha_t\alpha_b+\alpha_{b,t}^2)$ (A. Dedes, G. Degrassi and P. Slavich, arXiv:hep-ph/0305127) to the MSSM effective potential are used.
- The running masses of the superpartners (unknown on this stage of the calculation) enter these equations.

SUSY breaking model and grand unification

- Gauge couplings are required to unify at the scale $\sim 10^{16}\,\mathrm{GeV}$
- mSUGRA conditions on soft SUSY breaking terms (other models can be easily implemented)

Sources of the errors

- Evaluation of the MSSM running couplings from the SM and QCD "observables": 1-loop radiative corrections (except the t quark mass).
- Radiative corrections to the masses are 1-loop (except some 2-loop contributions to the Higgs bosons masses).
- RG running is 2-loop (will not be covered here).
- Errors of numerical evaluation (mostly negligible compared to previously mentioned ones).

Uncertainties: SM & QCD matching

Two ways to estimate the uncertainties in the determination of the MSSM Lagrangian parameters:

- Make small variations of the low-energy input parameters.
- Calculate (and code) more radiative corrections to
 - the decoupling coefficient of the b quark mass m_b (A. Bednyakov, arXiv:0707.0650, required optimizations are almost done)
 - the decoupling coefficient of the strong coupling constant α_s (work in progress)
 - the t quark mass (done, A. Bednyakov, D.I. Kazakov, AS, arXiv:hep-ph/0507139)
 - \bullet the au lepton mass
 - the effective EW mixing angle
 - the minimum condition of the MSSM effective potential

- Taking into account 2-loop (actually, α_s^2) corrections to the t quark mass changes the estimate of the value of the top Yukawa at the EW scale.
- Due to RG running all MSSM Lagrangian parameters get shifted.
- Thus predicted mass spectrum also changes.

Grey regions – discrepancy between different MSSM mass spectrum calculations programs (http://cern.ch/kraml/comparison/)

- Taking into account 2-loop (actually, α_s^2) corrections to the t quark mass changes the estimate of the value of the top Yukawa at the EW scale.
- Due to RG running all MSSM Lagrangian parameters get shifted.
- Thus predicted mass spectrum also changes.

Grey regions — discrepancy between different MSSM mass spectrum calculations programs (http://cern.ch/kraml/comparison/)

- Taking into account 2-loop (actually, α_s^2) corrections to the t quark mass changes the estimate of the value of the top Yukawa at the EW scale.
- Due to RG running all MSSM Lagrangian parameters get shifted.
- Thus predicted mass spectrum also changes.

Grey regions — discrepancy between different MSSM mass spectrum calculations programs (http://cern.ch/kraml/comparison/)

- Taking into account 2-loop (actually, α_s^2) corrections to the t quark mass changes the estimate of the value of the top Yukawa at the EW scale.
- Due to RG running all MSSM Lagrangian parameters get shifted.
- Thus predicted mass spectrum also changes.

Grey regions — discrepancy between different MSSM mass spectrum calculations programs (http://cern.ch/kraml/comparison/)

- 2-loop self-energies are not calculated yet.
- vary the scale where 1-loop ones are evaluated.
- The scale dependence of the pole mass gives an estimate of the higher-order corrections.

- 2-loop self-energies are not calculated yet.
- vary the scale where 1-loop ones are evaluated.
- The scale dependence of the pole mass gives an estimate of the higher-order corrections.

- 2-loop self-energies are not calculated yet.
- vary the scale where 1-loop ones are evaluated.
- The scale dependence of the pole mass gives an estimate of the higher-order corrections.

- 2-loop self-energies are not calculated yet.
- vary the scale where 1-loop ones are evaluated.
- The scale dependence of the pole mass gives an estimate of the higher-order corrections.

- 2-loop self-energies are not calculated yet.
- vary the scale where 1-loop ones are evaluated.
- The scale dependence of the pole mass gives an estimate of the higher-order corrections.

Numerical calculation errors

Method: increase the size of the mantissa of the FP (floating point) numbers (s/double/long double/g or use some arbitrary precision arithmetic library) and see how result changes.

- Numerical RGE integration: nothing to bother with. Beta-functions are very nice (polynomials in the couplings).
- Calculation of Feynman integrals. 1-loop ones are weird, but still manageable. Arbitrary precision FP arithmetics is used for 2-loop functions.

Accuracy estimates: role of FP rounding errors

Exact formula might be worse than approximate.

- If one just types in well-known expression for Passarino-Veltman B_0 function, the result is awful.

Accuracy estimates: role of FP rounding errors

Exact formula might be worse than approximate.

- If one just types in well-known expression for Passarino-Veltman B₀ function, the result is awful.
- Appropriate asymptotic expansion (A. N. Kuznetsov, F. V. Tkachov and V. V. Vlasov, arXiv:hep-th/9612037;
 V. A. Smirnov, Springer Tracts Mod. Phys. 177, 1 (2002)), such as "large mass", "large momentum", "threshold", improves the result.

Accuracy estimates: role of FP rounding errors

Exact formula might be worse than approximate.

- If one just types in well-known expression for Passarino-Veltman B₀ function, the result is awful.
- Appropriate asymptotic expansion (A. N. Kuznetsov, F. V. Tkachov and V. V. Vlasov, arXiv:hep-th/9612037;
 V. A. Smirnov, Springer Tracts Mod. Phys. 177, 1 (2002)), such as "large mass", "large momentum", "threshold", improves the result.

Future work

- Analyse the effect of the 2-loop corrections to the MSSM → QCD decoupling coefficient of the b quark mass.
- Analyse the effect of the 2-loop corrections to the MSSM \rightarrow QCD decoupling coefficient of the strong coupling α_s .
- 3-loop MSSM RGEs are known, may be run at 3 loops?
- Include more EW ($B \rightarrow s \gamma$, a_{μ} , etc.) and cosmological inputs.
- Write the algorithm for finding the optimal scale for the pole mass calculation.
- Improve the documentation.
- Implement more SUSY breaking models.
- ffmssmsc is already fast, but can be (at least) 3 5 times faster.

Conclusion

- First free (as in "free speech") code for sparticles masses calculation.
- Given the set of SM and QCD "observables", and model of SUSY breaking, calculate the MSSM Lagrangian parameters (fast, errors: ~ several %).
- Given the MSSM Lagrangian parameters, calculate physical (pole) masses of superpartners. (uncertainties: $\sim 10\%$ for heavy Higges and charginos, $\lesssim 5\%$ for the rest of the superpartners).

Thank you for your attention! Let The Source be with you!

Conclusion

- First free (as in "free speech") code for sparticles masses calculation.
- Given the set of SM and QCD "observables", and model of SUSY breaking, calculate the MSSM Lagrangian parameters (fast, errors: ~ several %).
- Given the MSSM Lagrangian parameters, calculate physical (pole) masses of superpartners. (uncertainties: $\sim 10\%$ for heavy Higges and charginos, $\lesssim 5\%$ for the rest of the superpartners).

Thank you for your attention! Let The Source be with you!

