One-loop corrections in chargino sector with CP violating phases

Krzysztof Rolbiecki

Institute of Theoretical Physics, Warsaw University

Karlsruhe, 27 July 2007 SUSY '07

Outline

- Introduction
- CP violation in chargino production
- CP violation in chargino decays
- Summary and outlook

Motivation

- radiative corrections in MSSM could be of order 20%
- so far only CP-conserving case at one loop thoroughly examined
- MSSM with CP violating phases:

$$M_1 = |M_1|e^{i\Phi_1}, \, \mu = |\mu|e^{i\Phi_\mu}, \, A_f = |A_f|e^{i\Phi_f}$$

- → strong bounds on these phases from EDMs exist, however
- → large phases possible if accidental cancelations occur
- → or 1st and 2nd generation of squarks are heavy
- $\rightarrow \Phi_1$ poorly constrained
- calculation of radiative corrections to CP violating observables, e.g. asymmetries in decay widths, asymmetries in sparticles production, asymmetries of triple products of momenta and/or spins
 - → such observables provide unambiguous way of detecting CP violating phases
- here we analyze gaugino/higgsino sectors of complex MSSM at one loop level

Chargino sector of MSSM

ullet chargino mass matrix in gauge eigenstate basis $(ilde{W}^-, ilde{H}^-)$

$$M_{ ilde{\chi}^\pm} = \left(egin{array}{cc} M_2 & \sqrt{2} m_W \cos eta \ \sqrt{2} m_W \sin eta & \mu \end{array}
ight)$$

diagonalization using unitary matrices U and V

$$V^*M_{\widetilde{\chi}^{\pm}}U^{\dagger}=\left(egin{array}{cc} m_{\widetilde{\chi}^{\pm}_1} & 0 \ 0 & m_{\widetilde{\chi}^{\pm}_2} \end{array}
ight)$$

mass eigenstates in Weyl representation

$$U\left(\begin{array}{c} \tilde{W}_L^- \\ \tilde{H}_d^- \end{array}\right) = \left(\begin{array}{c} \chi_{1L}^- \\ \chi_{2L}^- \end{array}\right) \quad V\left(\begin{array}{c} \tilde{W}_R^+ \\ \tilde{H}_u^+ \end{array}\right) = \left(\begin{array}{c} \chi_{1R}^+ \\ \chi_{2R}^+ \end{array}\right)$$

Dirac spinors

$$\tilde{\chi}_{1}^{-} = \begin{pmatrix} \chi_{1L}^{-} \\ \chi_{1R}^{-} \end{pmatrix}, \quad \tilde{\chi}_{2}^{-} = \begin{pmatrix} \chi_{2L}^{-} \\ \chi_{2R}^{-} \end{pmatrix}$$

Neutralino sector of MSSM

• neutralino mass matrix in gauge eigenstate basis $(\tilde{B}, \tilde{W}^0, \tilde{H}_d^0, \tilde{H}_u^0)$

$$M_{\tilde{\chi}^{0}} = \begin{pmatrix} M_{1} & 0 & -m_{Z}c_{\beta}s_{W} & m_{Z}s_{\beta}s_{W} \\ 0 & M_{2} & m_{Z}c_{\beta}c_{W} & -m_{Z}s_{\beta}c_{W} \\ -m_{Z}c_{\beta}s_{W} & m_{Z}c_{\beta}c_{W} & 0 & -\mu \\ m_{Z}s_{\beta}s_{W} & -m_{Z}s_{\beta}c_{W} & -\mu & 0 \end{pmatrix}$$

diagonalization of mass matrix

$$\mathrm{diag}(m_{\tilde{\chi}_1^0},m_{\tilde{\chi}_2^0},m_{\tilde{\chi}_3^0},m_{\tilde{\chi}_4^0})=N^*M_{\tilde{\chi}^0}N^{-1}$$

• mass eigenstates - Weyl spinors χ_i^0 and Majorana spinors $\tilde{\chi}_i^0$ (i=1,2,3,4)

$$\begin{pmatrix} \chi_1^0 \\ \chi_2^0 \\ \chi_3^0 \\ \chi_4^0 \end{pmatrix} = N \begin{pmatrix} \tilde{B} \\ \tilde{W}^0 \\ \tilde{H}_d^0 \\ \tilde{H}_{ii}^0 \end{pmatrix} \qquad \tilde{\chi}_i^0 = \begin{pmatrix} \chi_i^0 \\ \tilde{\chi}_i^0 \end{pmatrix}$$

Renormalization scheme

We work in the on-shell scheme:

- regularization by dimensional reduction
- physical masses are input parameters
- renormalization conditions defined at the pole masses
- no mixing between particles on-shell
- renormalization is performed after rotation of fields to mass eigenstate basis
- introduce renormalization constants for fields and mixing matrices
- attention needed: the number of observable masses exceeds the number of free parameters
 - \Rightarrow e.g. in chargino/neutralino sector in the CP conserving case we have 4 parameters (M_1 , M_2 , μ , tan β) and 6 masses

Renormalization of charginos and neutralinos

1PI renormalized Green's function

$$\frac{\tilde{\chi}_{j}}{k \to 0} - \frac{\tilde{\chi}_{i}}{k} = \hat{\Gamma}_{ij}^{\tilde{\chi}} = i(k - m_{\tilde{\chi}_{i}})\delta_{ij} + i\hat{\Sigma}_{ij}^{\tilde{\chi}}(k^{2})$$

substitute in Lagrangian wave function and mass counter terms

$$ilde{\chi}_{i}
ightarrow (\delta_{ij} + rac{1}{2}\delta ilde{Z}^{L}_{ij}P_{L} + rac{1}{2}\delta ilde{Z}^{R}_{ij}P_{R}) ilde{\chi}_{j}, \qquad m_{ ilde{\chi}_{i}}
ightarrow m_{ ilde{\chi}_{i}} + \delta m_{ ilde{\chi}_{i}}$$

- renormalization conditions:
 - \Rightarrow poles at $k^2 = m_{\tilde{x}}^2$, residues equal 1 and no mixing on-shell
- introduce counterterms for mixing matrices

$$\delta U_{ij} = \frac{1}{4} \sum_{k=1}^{2} \left(\delta \tilde{Z}_{ik}^{\pm,R} - (\delta \tilde{Z}_{ki}^{\pm,R})^{*} \right) U_{kj} \qquad \delta V_{ij} = \frac{1}{4} \sum_{k=1}^{2} \left(\delta \tilde{Z}_{ik}^{\pm,L} - (\delta \tilde{Z}_{ki}^{\pm,L})^{*} \right) V_{kj}$$

$$\delta N_{ij} = \frac{1}{4} \sum_{k=1}^{4} \left(\delta \tilde{Z}_{ik}^{0,L} - \delta \tilde{Z}_{ki}^{0,R} \right) N_{kj}$$

Chargino production at the tree-level

- tree-level cross-section conserves CP
- CP violating effects can be probed by observables sensitive to the chargino polarization component normal to the production plane [Choi ea.]
- CP effects appear also for polarized initial beams when one takes into account also chargino decays [Bartl ea., Kittel ea.]
- for non-diagonal chargino pair production $e^+e^- \to \tilde{\chi}_1^\pm \tilde{\chi}_2^\mp$ at the one-loop level one can construct CP sensitive observable without polarization of electron/positron beams [Osland, Vereshagin]

Structure of corrections

 three types of one-loop contributions: vertex diagrams, self-energy diagrams and box diagrams ⇒ use FeynArts/FormCalc/LoopTools

 in CP violating case also inclusion of corrections on external chargino lines necessary

CP asymmetry in $e^+e^- ightarrow ilde{\chi}_1^\pm ilde{\chi}_2^\mp$

 asymmetry in production cross section of non-diagonal chargino pairs induced by radiative corrections

$$A_{12} = \frac{\sigma(e^{+}e^{-} \to \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{-}) - \sigma(e^{+}e^{-} \to \tilde{\chi}_{2}^{+}\tilde{\chi}_{1}^{-})}{\sigma(e^{+}e^{-} \to \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{-}) + \sigma(e^{+}e^{-} \to \tilde{\chi}_{2}^{+}\tilde{\chi}_{1}^{-})}$$

• A_{12} is sensitive to the phase of μ and A_t

CP asymmetry in $e^+e^- ightarrow ilde{\chi}_1^\pm ilde{\chi}_2^\mp$

 asymmetry in production cross section of non-diagonal chargino pairs induced by radiative corrections

$$A_{12} = \frac{\sigma(e^{+}e^{-} \to \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{-}) - \sigma(e^{+}e^{-} \to \tilde{\chi}_{2}^{+}\tilde{\chi}_{1}^{-})}{\sigma(e^{+}e^{-} \to \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{-}) + \sigma(e^{+}e^{-} \to \tilde{\chi}_{2}^{+}\tilde{\chi}_{1}^{-})}$$

A₁₂ is sensitive to the phase of μ and A_t

Chargino decays at the tree-level

- here we consider only genuine 3-body decays
 - \Rightarrow sleptons heavier than chargino: $m_{\tilde{\ell}}, m_{\tilde{\nu}} > m_{\chi^{\pm}}$
 - \Rightarrow mass difference between chargino and neutralino smaller than m_W
- in lepton channel only one particle detectable
- diagrams with Higgs exchange relevant only for heavy fermions
- shape of the decay distributions important at ILC for measurement of chargino and lightest neutralino masses

Structure of corrections

- three types of one-loop contributions: box, vertex and self-energy diagrams

 use FeynArts/FormCalc/LoopTools
- to obtain physically meaningful result inclusion of soft and hard photon bremsstrahlung necessary

Decay width

numerical analysis for the following scenario:

particle	$\tilde{\chi}_1^{\pm}$	$ ilde{\chi}^0_1$	$\tilde{\mathbf{e}}_L$	\tilde{e}_{R}	$ ilde{ u}_{e}$
mass [GeV]	165.3	97.9	287.9	221.9	276.6
particle	$ ilde{ au}_1$	$ ilde{ au}_2$	$ ilde{q}_L$	\tilde{q}_R	H^\pm
mass [GeV]	211.9	289.0	561.3	544.3	436.4

- only genuine 3-body decays allowed: $\tilde{\chi}_1^+ \to \tilde{\chi}_1^0 e^+ \nu_e$, $\tilde{\chi}_1^+ \to \tilde{\chi}_1^0 \mu^+ \nu_\mu$, $\tilde{\chi}_1^+ \to \tilde{\chi}_1^0 \tau^+ \nu_\tau$, $\tilde{\chi}_1^+ \to \tilde{\chi}_1^0 u d$, $\tilde{\chi}_1^+ \to \tilde{\chi}_1^0 c \bar{s}$
- correction in leptonic modes typically of the order of 5%

decay mode	tree-level width	one-loop width		
$e\nu_e \tilde{\chi}_1^0$	4.18 keV	4.38 keV		
$\mu u_{\mu} \tilde{\chi}_{1}^{0}$	4.18 keV	4.38 keV		
$ au u_{ au} ilde{\chi}_{1}^{0}$	4.38 keV	4.61 keV		

Lepton energy distribution

- one-loop corrections to electron and τ energy distributions in 3-body chargino decays
- electron distribution shifted slightly towards lower energies due to photonic corrections

Φ_{M_1} dependence

- width $\Gamma(\tilde{\chi}_1^+ \to \tilde{\chi}_1^0 e^+ \nu)$ and ratio of branching fractions $BR(\tilde{\chi}_1^+ \to \tilde{\chi}_1^0 e^+ \nu)/BR(\tilde{\chi}_1^+ \to \tilde{\chi}_1^0 \tau^+ \nu_{\tau})$ show strong dependence on the phase Φ_{M_1}
- radiative corrections more significant around $\Phi_{M_1} = 0$

Angular distribution

- angular distribution of e⁺/e⁻ with respect to chargino spin vector
- for $\Phi_{M_1} = \pi/2$ significant difference between corrections to e^+ and e^- distributions

Angular distribution

- ullet angular distribution of e^+/e^- with respect to chargino spin vector
- for $\Phi_{M_1} = \pi/2$ significant difference between corrections to e^+ and e^- distributions

Charge asymmetry

• asymmetry in decay widths between $\tilde{\chi}_1^+$ and $\tilde{\chi}_1^-$

$$A_{+-}^{e\nu} = \frac{\Gamma(\tilde{\chi}_1^+ \rightarrow \tilde{\chi}_1^0 e^+ \nu_e) - \Gamma(\tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 e^- \bar{\nu}_e)}{\Gamma(\tilde{\chi}_1^+ \rightarrow \tilde{\chi}_1^0 e^+ \nu_e) + \Gamma(\tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 e^- \bar{\nu}_e)}$$

sensitive to the CP phase of the bino mass parameter M₁

- easy:
 - $\,\to\, \text{counting experiment}$
 - ightarrow large chargino production rate ($\sigma \sim$ 200 fb)
- accurate determination of asymmetry possible
- access to CP properties of neutralino sector

Summary and outlook

- One-loop corrections to leptonic chargino decays calculated important for ILC physics
- Loop corrections induce significant CP violation effects in chargino production and decays which are not present at the tree-level
- Might be useful for determination of CP phases in chargino/neutralino/stop sector
- Outlook: Full analysis of production+decay required at one-loop for precision physics at the ILC
 - ⇒ Tania Robens' talk

