The Higgs sector in the MSSM with CP-phases at higher orders

Heidi Rzehak

Paul-Scherrer-Institut

in coll. with T. Hahn, S. Heinemeyer, W. Hollik and G. Weiglein

Outline

- ▶ Higgs sector in the MSSM with CP-phases
- ▶ Mass of the lightest Higgs boson
- Effective couplings

Higgs bosons

At Born level: no CP-violation:

- one phase in the Higgs potential: $V_{\text{Higgs}} = \cdots + \epsilon_{ij} |m_3^2| e^{i\varphi_{m_3^2}} H_1^i H_2^j + \cdots$ elimination via Peccei-Quinn transformation
- phase difference of Higgs doublets: vanishes because of minimum condition

Physical mass eigenstates (at Born level):

▶ 5 Higgs bosons: 3 neutral H^0 , h^0 , A^0 ; 2 charged H^{\pm}

Masses of the Higgs bosons:

- ▶ not all independent: here: H^{\pm} -mass $M_{H^{\pm}}$ (and tan β) as free parameter tan $\beta = \frac{v_2}{H}$: ratio of the Higgs vac. expect. values
- ▶ lightest Higgs boson: h⁰

Mass of the lightest Higgs boson

Upper theoretical Born mass bound:
$$M_{h^0} \leq M_Z = 91 \; \text{GeV}$$
 with quantum corrections of higher orders: $M_{h^0} \lesssim 135 \; \text{GeV}$ dependent on the MSSM parameters: particularly on parameter phases

• Discovery of the Higgs boson:

• Now, before the discovery: Exclusion of parts of the parameter space

Determination of the Higgs masses

Two-point-function:

$$-i\hat{\Gamma}(p^2) = p^2 - \mathsf{M}(\mathbf{p}^2)$$

with the matrix:

$$\mathbf{M}(\mathbf{p}^2) = \begin{pmatrix} M_{H_{\mathrm{Born}}^0}^2 - \hat{\Sigma}_{H^0H^0}(p^2) & -\hat{\Sigma}_{H^0h^0}(p^2) & -\hat{\Sigma}_{H^0A^0}(p^2) \\ -\hat{\Sigma}_{H^0h^0}(p^2) & M_{h_{\mathrm{Born}}^0}^2 - \hat{\Sigma}_{h^0h^0}(p^2) & -\hat{\Sigma}_{h^0A^0}(p^2) \\ -\hat{\Sigma}_{H^0A^0}(p^2) & -\hat{\Sigma}_{h^0A^0}(p^2) & M_{A_{\mathrm{Born}}^0}^2 - \hat{\Sigma}_{A^0A^0}(p^2) \end{pmatrix}$$
 Real parameters:

$$\hat{\Sigma}_{H^0A^0}(p^2) = \hat{\Sigma}_{h^0A^0}(p^2) = 0$$

no mixing between CP-even and CP-odd states

Calculate the zeros of the determinant of $\hat{\Gamma}$: $det[p^2 - M(p^2)] = 0$

$$\Rightarrow$$
 Higgs masses M_{h_1} , M_{h_2} , M_{h_3}

Higgs masses at higher orders (incl. CP-phases)

Status:

• Higgs masses at higher order without CP-phases \Rightarrow good shape (up to leading 3-loop [S. Martin 07])

Including CP-phases:

- Eff. potential approach, up to two-loop leading-log contributions (sfermionic/fermionic contributions) [Pilaftsis, Wagner], [Demir], [Choi, Drees, Lee], [Carena, Ellis, Pilaftsis, Wagner]
- Gaugino contributions [Ibrahim, Nath]
- Effects of imaginary parts at one-loop [Ellis, Lee, Pilaftsis], [Choi, Kalinowski, Liao, Zerwas], [Bernabeu, Binosi, Papavassiliou]

Here: full one-loop + dominant two-loop (Feynman diagrammatic) [M. Frank, et al.]

Renormalized Higgs self energies at one-loop

Parameters of the Higgs sector need to be defined at one-loop:

- ▶ define the H^{\pm} -, W- as well as the Z-mass as **pole mass**
 - \Rightarrow directly related to a **physical observable**

$$\delta M_X^{(1)} = \operatorname{Re}\Sigma_{XX}(M_X^2), \quad X = \{H^{\pm}, W, Z\}$$

▶ **no** shift of the minimum of the Higgs potential

▶ $\overline{\mathbf{DR}}$ -scheme for field and tan β renormalization

$$\delta \tan^{(1)} \beta = \delta \tan \beta^{\overline{\mathsf{DR}}}, \quad \delta Z_{H_i}^{(1)} = \delta Z_{H_i}^{\overline{\mathsf{DR}}}$$

Renormalized Higgs self energies at two-loop

Calculation of the dominant two-loop contributions $\mathcal{O}(\alpha_t \alpha_s)$ ($\alpha_t = \lambda_t^2/(4\pi)$):

- Extraction of the relevant terms (equiv. to eff. potential approach):
 - use vanishing external momenta $\hat{\Sigma}^{(2)}(0)$
 - ullet use vanishing electroweak gauge couplings g, g'
- Parameters of the Higgs sector defined at two-loop:
 - no shift of the minimum of the Higgs potential
 define the H[±]-mass M_{H±} as the pole mass
 - ⇒ directly related to a **physical observable**

Yukawa coupling

- ▶ Parameters of the top (bottom) sector defined at one-loop:
 - top quark mass and top squark masses on-shell
 - generalization of the mixing angle condition: $\widetilde{\mathrm{Re}}\hat{\Sigma}_{\tilde{t}_{12}}(m_{\tilde{t}_1}^2) + \widetilde{\mathrm{Re}}\hat{\Sigma}_{\tilde{t}_{12}}(m_{\tilde{t}_2}^2) = 0$

Phases in other sectors

- Sfermion sector:
 - phase φ_{A_f} of the trilinear coupling A_f
- Higgsino sector:
- Gaugino sector:
 - ▶ phases of the gaugino mass parameters M_1 , M_2 , M_3
 - one phase can be eliminated (R-Transformation), often φ_{M_2}
 - phase $arphi_{M_3}$ is the phase of the gluino mass parameter
 - \Rightarrow enters into the Higgs sector at two-loop level

Results: φ_{A_t} - versus φ_{X_t} -dependence (large $M_{H^{\pm}}$)

size of the squark mixing: $X_t := A_t - \mu^* \cot \beta$

- The qualitative behaviour of M_{h_1} can change with the inclusion of quantum corrections of $\mathcal{O}(\alpha_t \alpha_s)$.
- Quantum corrections tend to be smaller for constant absolute value of of the squark mixing, $|X_t| = \text{const.}$

Results: φ_{X_t} -dependence (small $M_{H^{\pm}}$)

- Higgs mass M_{h_1} does depend on the phase φ_{X_t} , $|X_t|=700$ GeV.
- One-loop corrections are more sensitive to φ_{X_t} for small $M_{H^{\pm}}$.

Results: φ_{X_t} -dependence (small $M_{H^{\pm}}$)

Bands: Estimate of the size of the corrections of $\mathcal{O}(\alpha_b\alpha_s + \alpha_t^2 + \alpha_t\alpha_b + \alpha_b^2)$ [Slavich et al.], FeynHiggs

Interpolation: Size of above corrections known for the MSSM with real parameters: Evaluate for $\varphi_{X_t} = 0$ and $\varphi_{X_t} = \pi$ and interpolate

$$\mathcal{O}(\alpha): \tan\beta = 5 \qquad \bullet \qquad \tan\beta = 15$$

$$\mathcal{O}(\alpha + \alpha_t \alpha_s): \tan\beta = 5 \qquad \tan\beta = 15$$

$$\mathcal{O}(\alpha + \alpha_t \alpha_s) + \text{interpol.}: \tan\beta = 5 \qquad \tan\beta = 15$$

- Higgs mass M_{h_1} does depend on the phase φ_{X_t} , $|X_t| = 700$ GeV.
- One-loop corrections are more sensitive to φ_{X_t} for small $M_{H^{\pm}}$.

Amplitudes with external Higgs bosons

Mixing between the Higgs bosons:

$$(\overline{\mathsf{DR}}/\mathsf{on}\text{-shell scheme})\ \phi_{\{i,j\}} = \mathsf{H}^0,\ \mathsf{h}^0,\ \mathsf{A}^0$$

Finite wave function normalization factors needed:

$$\sqrt{\hat{Z}_i}(\Gamma_i + \hat{Z}_{ij}\Gamma_j + \hat{Z}_{ik}\Gamma_k)$$

- \hat{Z}_i ensures that residuum is set to 1
- \hat{Z}_{ij} describes transition $i \rightarrow j$

Definition of mixing matrix $(\hat{Z}_{ii} = 1)$: $\tilde{\mathbf{Z}}_{ij} = \sqrt{\hat{Z}_i}\hat{Z}_{ij}$

Vertex with external Higgs boson:

$$\tilde{\mathbf{Z}}_{ii}\Gamma_i + \tilde{\mathbf{Z}}_{ij}\Gamma_j + \tilde{\mathbf{Z}}_{ik}\Gamma_k$$

Amplitudes with internal Higgs bosons

Diagrams with internal Higgs bosons enter precision observables (W-mass, ...):

- Calculation with Born states $\phi_i = H^0, h^0, A^0$: no problem
- Calculation with $\phi_i = h_1, h_2, h_3 \Rightarrow$ Inclusion of higher order effects:

One possibility: Use of effective couplings:

Consider $\tilde{\mathbf{Z}}_{ii}$ as mixing matrix:

Problem: $\tilde{\mathbf{Z}}_{ij}$ is a non-unitary matrix

(no rotation matrix)

Further approximations:

effective potential approach:
$$\tilde{\mathbf{Z}}(\hat{\Sigma}(p^2)) \to \tilde{\mathbf{Z}}(\hat{\Sigma}(0)) = \mathcal{R}$$
 on-shell approximation: $\tilde{\mathbf{Z}}(\hat{\Sigma}(p^2)) \to \tilde{\mathbf{Z}}(\operatorname{Re}\hat{\Sigma}(p^2_{OS})) = \mathcal{U}_{\hat{\Sigma}_{ii}(p^2_{OS} = (M^2_{igorn}) + N^2_{igorn})}$

Couplings

One example:

Coupling of two gauge bosons (V = W, Z) and one Higgs boson:

$$g_{h_iVV} = [U_{i1}\cos(\beta - \alpha) + U_{i2}\sin(\beta - \alpha)]g_{H_{SM}VV}$$

standard model coupling

- only CP-even components of the Higgs bosons couple to V
- all three Higgs bosons can have a CP-even component

Results: φ_{X_t} -dependence of couplings

- Here: $g_{h_1 VV}$ is normalized to the standard model coupling.
- $|g_{h_1VV}|^2$ does depend on the phase φ_{X_t} , $|X_t| = 700$ GeV.
- $\mathcal{R}_{p^2=0}$ and $\mathcal{U}_{p_{OS}}$ give similar results with only tiny differences.

Summary

- ▶ At **Born** level: **no** CP-violation in the Higgs sector
- Quantum corrections can induce CP-violation.
- Quantum corrections have to be taken into account:
 - prediction of Higgs boson masses
 - amplitudes with external Higgs bosons \Rightarrow $\tilde{\mathbf{Z}}$
 - amplitudes with internal Higgs bosons $\Rightarrow \mathcal{R}$, \mathcal{U}
- ▶ The dominant two-loop contributions $\mathcal{O}(\alpha_t \alpha_s)$ with complete phase dependence are **included** into FeynHiggs (talk by T. Hahn).