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Introduction
The most popular explanation for the smallness of neutrino masses is 
the (type I) seesaw mechanism

                                             ⇒

The seesaw mechanism cannot be directly tested, but it has observable 
consequences:

A lot of efforts have been devoted to their study in the recent years. In 
particular, conditions for successful leptogenesis have been obtained and 
many refinements have been added (finite T corrections, flavour effects...)

• leptogenesis [Fukugita, Yanagida]

• lepton flavour violation (LFV) in Susy theories [Borzumati, Masiero]

Minkowski - Gell-Mann, Ramond, Slansky 
Yanagida - Mohapatra, Senjanovic

mν ∼ y2v2

MR



Most studies have been done in the framework of the type I [heavy right-
handed neutrino exchange] seesaw mechanism, or assumed dominance of 
either type I or type II [heavy scalar SU(2)L triplet exchange] seesaw

➞ it is interesting to investigate whether the generic situation where both 
contributions are comparable in size can lead to qualitatively different results

In extensions of the SM such as left-right symmetric theories and SO(10) 
GUTs, the type I and type II seesaw mechanisms are simultaneously present 
and related by a left-right symmetry

➞ appropriate framework to investigate the interplay between the type I 
and the type II seesaw mechanisms

Further motivation: right-handed neutrinos are suggestive of Grand Unification. 
However, successful leptogenesis is not so easy to achieve in SO(10) models      
with a type I seesaw mechanism (MD ∝ Mu ⇒ very hierarchical right-handed 
neutrino masses, with M₁ << 10⁹ GeV)



Type I+II seesaw mechanism:

Right-handed neutrino mass matrix: 

     vR ≡〈ΔR〉 scale of B-L breaking

    ΔR = SU(2)R triplet with couplings fRij to right-handed neutrinos

vL is small since it is an induced vev: 

In a broad class of theories with underlying left-right symmetry (such as    
SO(10) with a        ), one has             and             

           ➞ left-right symmetric seesaw mechanism

ΔL = SU(2)L triplet with
couplings fLij to lepton doublets

vL ≡ 〈∆L〉 ∼ v2vR/M2
∆L

MR = fRvR

Mν = fLvL −

v2

vR

Y T f−1

R
Y ≡ M II

ν + M I
ν

The left-right symmetric seesaw mechanism

Y = Y
T

126H fL = fR ≡ f



In addition to the right-handed neutrinos, the SU(2)L triplet 
contributes to leptogenesis and LFV

➞ in order to study leptogenesis and/or LFV in a theory which 
predicts the Yij, need to reconstruct the fij (which determine both   
the triplet couplings and the Mi) as a function of the Yij and of the 
measured oscillation parameters



The starting point is the left-right symmetric seesaw formula:

with f, Y complex and symmetric. The goal is to reconstruct f assuming     
that Y is known in the basis of charged lepton mass eigenstates

Akhmedov and Frigerio (hep-ph/0509299) showed that there are     
solutions for n generations, connected 2 by 2 by a “seesaw duality”:

and provided explicit expressions for the fij up to n=3

In hep-ph/0606078, we proposed a simpler reconstruction procedure which 
employs complex orthogonal matrices

Reconstruction of the heavy neutrino mass spectrum

Mν = fvL −

v2

vR

Y f−1Y

2n

f −→ f̂ ≡ Mν

vL
− f



First rewrite the LR symmetric seesaw formula                                 as

with                                       and

               

where NY is such that                    (Y invertible)

Z complex symmetric ⇒ can be diagonalized by a complex orthogonal 
matrix OZ if its eigenvalues zi are all distinct:

Then X can be diagonalized by the same orthogonal matrix as Z, and its 
eigenvalues are the solutions of:

2 solutions            for each i ⇒ 2³ = 8 solutions for X, hence for f:

Z = OZDiag (z1, z2, z3)O
T

Z , OZOT

Z = 1

zi = αxi − βx−1

i
(i = 1, 2, 3)

f = NY OZ





x1 0 0

0 x2 0

0 0 x3



 OT
ZNT

Y , xi = x±

i

x
+

i
, x

−

i

Mν = αf − β Y f−1Y

Z = αX − βX−1

α ≡ vL , β ≡ v2/vR

Z ≡ N−1
Y Mν(N−1

Y )T X ≡ N−1
Y f(N−1

Y )T

Y = NY NT
Y



The corresponding right-handed neutrino masses Mi = fi vR are obtained by 
diagonalizing f with a unitary matrix:

and the couplings of the NR mass eigenstates are

f = Uf




f1 0 0
0 f2 0
0 0 f3



 UT
f , UfU†

f = 1

U†
fY



We denote the 2 solutions of                            by:

(+,+,+) refers to the solution                 ,  (+,+,–) to                 , etc 

In the large vR limit (                ):

The remaining 6 solutions correspond to mixed cases in which Mν receives 
significant contributions from both seesaw mechanisms

In the small vR limit (                ):

If Y is hierarchical,                         holds for all 8 solutions

Properties of the solutions

zi = αxi − βx−1

i

x±

i
≡

zi ±
√

z2
i

+ 4αβ

2α

(x+
1 , x

+
2 , x

+
3 ) (x+

1 , x
+
2 , x

−

3 )

f (+,+,+)
−→

Mν

vL

f (−,−,−)
−→ −

v2

vR

Y M−1
ν Y

x±

i
! ±

√

β/α f (±,±,±)
−→ ±

√

β/α Y

x
+

i
!

zi

α

(“type II branch”)

x−

i
! −

β

zi

(“type I branch”)

fi −→

√

β/α yi

4αβ ! |z1|
2

|z3|
2 ! 4αβ



A case study: SO(10) models with two 10’s and a       in the Higgs sector

                     symmetric                               with

Assuming that the doublets in the       have no vev, one has:          

Then, for a given choice of the neutrino parameters and of the high energy  
phases contained in Mu, Y and Mν are known and f can be reconstructed as  
a function of the B-L breaking scale vR and of β/α

                          depends on the model. Perturbativity of the fij couplings 
constrains β/α ≤ O(1) and restricts the range of vR

Plots: normal hierarchy with m₁ = 10ˉ³ eV,  sin²θ₁₃ = 0.009,  δ = 0 and all Majorana 
and high-energy phases vanish – β = α

126

W ! Y
(1)
ij 16i16j101 + Y

(2)
ij 16i16j102 + fij 16i16j126

126

Y (1), Y (2) 126 ! ∆L,∆R fL = fR = f

β/α = v2/vLvR

Y = Mu/v Md = Me
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Figure 1: Right-handed neutrino masses as a function of vR for each of the 8 solutions (+, +, +)
to (−,−,−) in the reference case of a hierarchical light neutrino mass spectrum with m1 = 10−3

eV, β = α and no CP violation beyond the CKM phase (δ = Φu
i = Φd

i = Φν
i = Φe

i = 0). The
range of variation of vR is restricted by the requirement that f3 ≤ 1. Dotted lines indicate a
fine-tuning greater than 10% in the (3, 3) entry of the light neutrino mass matrix.
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Figure 1: Right-handed neutrino masses as a function of vR for each of the 8 solutions (+, +, +)
to (−,−,−) in the reference case of a hierarchical light neutrino mass spectrum with m1 = 10−3

eV, β = α and no CP violation beyond the CKM phase (δ = Φu
i = Φd

i = Φν
i = Φe

i = 0). The
range of variation of vR is restricted by the requirement that f3 ≤ 1. Dotted lines indicate a
fine-tuning greater than 10% in the (3, 3) entry of the light neutrino mass matrix.

9



10
12

10
13

10
14

VR !GeV"10
9

10
10

10
11

10
12

10
13

10
14

Mi Case !!!

10
12

10
13

10
14

VR !GeV"10
9

10
10

10
11

10
12

10
13

10
14

10
15
Mi Case "!!

10
12

10
13

10
14

10
15
VR !GeV"10

9

10
10

10
11

10
12

10
13

10
14

10
15

Mi Case !"!

10
12

10
13

10
14

10
15
VR !GeV"10

9

10
10

10
11

10
12

10
13

10
14

10
15

Mi Case ""!

10
12

10
13

10
14

VR !GeV"

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

10
14

Mi Case !!"

10
12

10
13

10
14

10
15
VR !GeV"

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

10
14

10
15

Mi Case "!"

10
12

10
13

10
14

10
15

VR !GeV"

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

10
14

10
15

Mi Case !""

10
12

10
13

10
14

10
15

10
16

10
17
VR !GeV"

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

10
14

10
15

Mi Case """

Figure 1: Right-handed neutrino masses as a function of vR for each of the 8 solutions (+, +, +)
to (−,−,−) in the reference case of a hierarchical light neutrino mass spectrum with m1 = 10−3

eV, β = α and no CP violation beyond the CKM phase (δ = Φu
i = Φd

i = Φν
i = Φe

i = 0). The
range of variation of vR is restricted by the requirement that f3 ≤ 1. Dotted lines indicate a
fine-tuning greater than 10% in the (3, 3) entry of the light neutrino mass matrix.
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– at large vR, the solutions (+,+,+) and (–,–,–) tend to the type II (triplet 
exchange) and type I (heavy neutrino exchange) cases, respectively:

– at small vR, the type I and type II contribution compensate for each other 
in such a way that 

– 4 solutions are characterized by 

– 2 solutions are characterized by 

Mixing angles

- 2 solutions have RHN mixing angles very close to the CKM angles

- in the other 6 solutions, the mixing angles are close to the CKM angles at 
small vR, then take larger values at large vR 

M1 : M2 : M3 ∼ mu : mc : mt

(+,+,+) : M1 : M2 : M3 ∼ m1 : m2 : m3

(−,−,−) : M1 : M2 : M3 ∼ m2

u
: m2

c
: m2

t

f = Uf





f1 0 0

0 f2 0

0 0 f3



UT
f =⇒ U†

fY
Dirac couplings

in the basis of NR

mass eigenstates

Features of the right-handed neutrino spectrum

M1 ∼ 109 GeV

M1 ∼ 105 GeV
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Figure 2: Right-handed neutrino mixing angles as a function of vR for each of the 8 solutions
(+, +, +) to (−,−,−) in the reference case of a hierarchical light neutrino mass spectrum with
m1 = 10−3 eV, β = α and no CP violation beyond the CKM phase (δ = Φu

i = Φd
i = Φν

i = Φe
i =

0). The red [dark grey] curve corresponds to |(Uf)12|, the green [light grey] curve to |(Uf)13|,
and the blue [black] curve to |(Uf )23|.
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Standard (type I) leptogenesis: out-of equilibrium decays of the heavy RH 
neutrinos ⇒ lepton asymmetry ⇒ conversion into a baryon asymmetry  by 
sphaleron processes

CP asymmetry due to interference between tree and 1-loop diagrams:

     (assuming M1 << M2, M3)

Final baryon asymmetry:
    (η = efficiency factor)

To generate the observed baryon asymmetry,                                         , 
need                       [Davidson, Ibarra], unless                (resonant leptogenesis)

Implications for leptogenesis

[Fukugita, Yanagida]

εN1 ≡
Γ(N1 → LH)− Γ(N1 → L̄H!)
Γ(N1 → LH) + Γ(N1 → L̄H!)

$ 3
16π

∑

k

Im[(Y Y †)2k1]
(Y Y †)11

Mk

M1

Covi, Roulet, Vissani
Buchmüller, Plümacher

YB ≡ nB − nB̄

s
= −1.4× 10−3 η εN1

YB = (8.7± 0.3)× 10−11

M1 ! 109 GeV M1 !M2



The Davidson-Ibarra bound is problematic in SO(10) GUTs with Y ∝ Mu , 
which leads to M₁ << 10⁹ GeV

Type I+II leptogenesis: when M1 << MΔL , the SU(2)L triplet affects 
leptogenesis mainly through its contribution to the CP asymmetry of N1 

The total CP asymmetry                            depends on the reconstructed  
fij couplings, and is very sensitive to the high- and low-energy phases

Among the 8 solutions, 3 different patterns emerge for leptogenesis:

- 2 solutions with a rising M1 ⇒ large εN1 for large vR

- 2 solutions with                       

- 4 solutions with                         ⇒ εN1 too small, but                            
or rises with vR ⇒ the observed baryon asymmetry could be generated 
from N2 decays [Di Bari - Vives]

Hambye, Senjanovic - Antusch, King

εN1 = εI
N1

+ εII
N1

εII
N1

! 3
8π

∑

k,l

Im [Y1kY1l f!
kl vL ]

(Y Y †)11 v2
M1

M1 ∼ 109 GeV

M1 ∼ 105 GeV M2 ∼ 1010 GeV



Solve the Boltzmann equations with flavour effects and decays of N₁ and N₂

Relevant quantities:

- flavour-dependent CP asymmetries:

- wash-out processes: ΔL and N₃ very heavy ⇒ associated wash-out 
processes suppressed. Furthermore, we neglect ΔL=2 processes since we 
deal with masses M₁ and M₂ < 10¹² GeV

⇒ only inverse decays and ΔL=1 scatterings associated with N₁ and N₂ 
enter the Boltzmann equations. The relevant washout parameters are:

Both the      and the       depend on the Mi and on the Yiα, hence on the 
reconstructed fij couplings

Computation of the baryon asymmetry

εα
Ni
≡ Γ(Ni → LαH)− Γ(Ni → L̄αH")

Γ(Ni → LαH) + Γ(Ni → L̄αH")

m̃α
i ≡ |Yiα|2v2

Mi

m̃α
iεα

Ni



Inputs: normal hierarchy with m₁ = 10ˉ³ eV,  sin²θ₁₃ = 0.009,  δ = 0 and various 
choices of the Majorana and high-energy phases – β/α = 0.1 – Md = Me

Tension with gravitino overproduction above                      (                     )

Results

solution +++

YB

vR (GeV)

φν
2 = π/4

φu
2 = π/4

no phase

vR ∼ 1013 GeV M1 > 1010 GeV



This solution fails to generate the observed baryon asymmetry for 
hierarchical light neutrino masses and Md = Me

[see Akhmedov et al. (hep-ph/0612194) and the talk by T. Hällgren in the cosmology session 
for a discussion of the inverted hierarchy case]

solution +-+

YB

vR (GeV)

φν
2 = π/4

φu
2 = π/4

no phase



Flavour effects matter: the most asymmetrically produced flavour in N₂ 
decays is the least erased by N₁ inverse decays. Still the baryon asymmetry 
generated from N₂ decays lies below the observed level

solution ---

YB

vR (GeV)

φν
2 = π/4

φu
2 = π/4

no phase



The above results assumed Md = Me, but this relation is in conflict with 
experimental data ⇒ must add corrections, e.g. from

Assuming that <45H> is in the B-L direction, and that <10H> does not 
contribute to up-type fermion masses, MD = Mu is preserved but

This affects the fij by introducing a mismatch Um between the bases of 
charged lepton and down quark mass eigenstates, yielding

in the basis of charged lepton mass eigenstates

Corrections to the mass relation Md = Me

κij

Λ
16i16j10H45H

Me =
(

Y d
10 − 3

〈45H〉
Λ

κ

)
vdMd =

(
Y d

10 +
〈45H〉

Λ
κ

)
vd

MD = UT
mUT

q




mu 0 0
0 mc 0
0 0 mt



 UqUm



Inputs: normal hierarchy with m₁ = 10ˉ³ eV,  sin²θ₁₃ = 0.009,  δ = 0 – various 
choices of Um and of the Majorana and high-energy phases – β/α = 0.1

Tension with gravitino overproduction above                       (                     )

Results

solution +++

YB

vR (GeV)

vR ∼ 1013 GeV M1 > 1010 GeV



Same inputs as before, but with corrections to Md = Me (for different 
choices of Um reproducing the correct down quark and charged lepton 
masses). Still conflict with upper bound on TR above 

solution +++

YB

vR (GeV)

vR ∼ 1013 GeV



Successful leptogenesis possible for                       (with                       ). 
The corrections to Md = Me play a crucial role here (not enough baryon 
asymmetry produced for Um = 1)  [see Akhmedov et al. (hep-ph/0612194) and the 
talk by T. Hällgren in the cosmology session for a discussion of the inverted hierarchy case]

solution +-+

YB

vR (GeV)

M1 ! 1010 GeVvR ! 1013 GeV



The baryon asymmetry generated from N2 decays (with                         ) 
could marginally explain the observed value. For this solution too the 
corrections to Md = Me play a crucial role

solution ---

YB

vR (GeV)

M2 ∼ 1010 GeV



Flavour violation in the slepton sector induces LFV processes such as         
µ → e γ or τ → µ γ 

Heavy states with LFV couplings induce flavour-violating slepton mass terms 
radiatively. The contribution of the RH neutrinos and of the scalar triplet 
[Borzumati, Masiero; Rossi] can be estimated by (leading-log approximation + 
universality among soft terms at MU):

where the Cij’s encapsulate the dependence on the seesaw parameters:

                  [in the following, we take MU = 10¹⁷ GeV and MΔL = vR]

Implications for lepton flavour violation

(m2

L̃
)ij ! −

3m2
0 + A2

0

8π2
Cij , (m2

ẽR
)ij ! 0 , Ae

ij ! −

3

8π2
A0yei

Cij

Cij ≡

∑

k

Y !
kiYkj ln

(

MU

Mk

)

+ 3 (ff†)ij ln

(

MU

M∆L

)



Experimental upper limits on the LFV decays li → lj γ can be turned into 
upper bounds on the Cij’s as a function of the supersymmetric mass 
parameters and of tanβ:

For tanβ = 10 and m₀, M1/2 ≤ O(1 TeV), we obtain the “experimental”   
upper bounds |C23| ≤ 10  (from τ → µ γ) and |C12| ≤ 0.1 (from µ → e γ) 
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Figure 1: Upper limits on C32, C21 in the plane (M1,mẽR
), respectively the B̃ and right slepton

masses. Gaugino and scalar universalities, µ from radiative electroweak symmetry breaking and
m0 = A0 have been assumed.

right-handed neutrino dominates - in the sense explained previously - the scale matm. There are
obviously three possibilities.

None: all the elements of the third row of R are of comparable magnitude. This class has the
following features: θatm ∼ θL

23; the scale of M3, the heaviest νc has to be below 5 · 1014 GeV;
yν is ”lopsided”; a tuning of the order of r is necessary in order to have at the same time large
atmospheric mixing and hierarchical masses. All the see-saw models which follow from a U(1)
flavour symmetry with charges of the same sign belong to this class. Indeed, it is well known
that in this case the actual values of the νc charges are not important because meff

ν depends
only on those of ν. This physical information is well encoded in R: its elements are all of the
same order but the absence of structure in R has to be payed by doing the tuning.

The heaviest, M3: rR33 ≥ R31, R32. In this case θL
23 ≈ θatm with corrections at the level of

r; again M3 < 5 · 1014 GeV and yν is ”lopsided”, but now we have naturally large atmospheric
mixing and large mass splittings, so that no tuning has to be introduced. These models necessi-
tate of a richer flavour symmetry than those above, for instance a U(1)F flavour symmetry with
positive and negative charges, which allow for holomorphic zeros in the textures.

One among the lightest, M1 or M2: rR31(32) ≥ R33, R32(31). The relevant feature of this

class is that θL
23 is no more linked to θatm. On the contrary, yν can possess small mixings so that

θL
23 could even vanish. For this class M3 ≥ r−15 · 1014 GeV - which is quite good for SO(10)

- large atmospheric mixing and large splitting is naturally realised. These interesting models
necessitate of an even richer flavour symmetry than those above: models have been studied with
several U(1)F ’s with positive and negative charges and with non-abelian flavour symmetries.
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We can then compare the predicted Cij’s for a given solution f with these 
“experimental” upper bounds:

The predictions lie significantly below the experimental bounds, except in 
the large vR region where, depending on the supersymmetric parameters,    
µ → e γ can exceed its present upper limit

Due to the small CKM angles [VL = VCKM], the type II contribution always 
dominates, except in the large vR region of solutions (–,–,–) [type I limit]  
and (+,–,–)
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10!1
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Figure 9: Coefficients C12 and C23 as a function of vR for the solutions (+, +, +) and (−,−,−)
in the case of a hierarchical light neutrino mass spectrum with m1 = 10−3 eV, β = α, and no
CP violation beyond the CKM phase. The green [light grey] curve corresponds to |C23|, and
the blue [black] curve to |C12|. The horizontal lines indicate the “experimental” constraints
|C23| < 10 and |C12| < 0.1 (see text).

breaking slepton mass matrices:

(m2
L̃
)ij " −

3m2
0 + A2

0

8π2
Cij , (m2

ẽR
)ij " 0 , Ae

ij " −
3

8π2
A0yei

Cij , (28)

where the coefficients Cij encapsulate the dependence on the seesaw parameters:

Cij ≡
∑

k

Y !
kiYkj ln

(

MU

Mk

)

+ 3 (ff †)ij ln

(

MU

M∆L

)

. (29)

Here MU is the scale at which universality among soft supersymmetry breaking parameters (at
least in the slepton and Higgs sector) is assumed. In the following, we take MU = 1017 GeV,
close to the Landau pole Λ10 where the theory becomes non perturbative. Neglecting the smaller
contribution of the flavour-violating A-term and working in the mass insertion approximation,
one can schematically write the branching ratio for lj → liγ as:

BR (lj → liγ)

BR (lj → liν̄iνj)
∝

|(m2
L̃
)ij |2

m̄8
L̃

tan2 β FSusy , (30)

where m̄2
L̃

is the average slepton doublet mass, and FSusy is a function of the supersymmetric
mass parameters and of tan β. The experimental upper limits BR (µ → eγ) < 1.2 × 10−11 [42]
and BR (τ → µγ) < 6.8 × 10−8 [43] can then be translated into upper bounds on the C12 and
C23 coefficients as a function of the superpartner masses and of tan β [44]. If we require that
the mSUGRA parameters m0 and M1/2 do not exceed ∼ 1 TeV, then from Fig. 3 of Ref. [45]
we can read the approximate upper bounds9 |C12| ! 0.1 and |C23| ! 10 for a benchmark value
of tanβ = 10. For different values of tan β, the upper bounds approximately scale as 10/ tanβ.

9More precisely, for tanβ = 10, one has |C12| < 0.1 (resp. |C23| < 20) for M1 < 300 GeV and 400 GeV !
m̄ẽR

! 1 TeV if A0 = 0, and for M1 ! 500 GeV and m̄ẽR
! 1 TeV if A0 = m0 + M1/2, where M1 is the bino

mass and m̄ẽR
is the average slepton singlet mass.
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Conclusions

• The possibilities to account for the observed neutrino data is much 
richer in the left-right symmetric seesaw mechanism than in the 
case of type I or type II dominance, with interesting implications for 
leptogenesis and LFV

• In particular, the mixed solutions where both seesaw mechanisms 
give a significant contribution to neutrino masses provide new 
opportunities for successful leptogenesis in SO(10) GUTs             

(the final asymmetry strongly depends on the values of the Yukawa 
couplings, so a correct description of charged fermion masses is an 
important ingredient in the analysis)



Back-up slides



Note: diagonalization of a complex symmetric matrix by a complex 
orthogonal matrix

1) the eigenvalues of Z are the roots of 

2) the eigenvectors associated with zi are the solutions of

It is always possible to find solutions of the latter equation, but in case of 
multiple solutions, it is not always possible to find an orthonormal basis of 
the eigenspace. The problem arises when one non-trivial solution has a zero 
norm in the SO(3, C) sense, i.e.              ; then Z cannot be diagonalized.

If all eigenvalues of Z are distinct, the eigenvectors automatically satisfy
           , hence Z is diagonalizable (it can be written as                               )   

Det (Z − z1) = 0

Z.!v = zi!v

!v.!v = 0

!v.!v != 0 OZDiag (z1, z2, z3)OT
Z



Flavour effects in leptogenesis

“one-flavour approximation”: leptogenesis described in terms of a single 
direction in flavour space, the lepton                          to which N1 couples 
⇒ valid as long as the charged lepton Yukawas λα are out of equilibrium

At                     ,  λτ is in equilibrium and destroys the coherence of          
⇒ 2 relevant flavours:   Lτ and a combination of Le and Lµ

At                    , λτ and λµ are in equilibrium ⇒ must distinguish between  
Le , Lµ and Lτ

Relevant parameters for the discussion of flavour effects:

qualitatively                                ⇒ can deviate from the one-flavour 
approximation if e.g.                        and 

Barbieri, Creminelli, Strumia, Tetradis
Endoh et al. - Pilaftsis et al. - Nardi et al. - Abada et al.
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L1 ∝ P
αY1αLα

T ! 1012 GeV L1

T ! 109 GeV

ε
α
N1

≡
Γ(N1 → LαH) − Γ(N1 → L̄αH")

Γ(N1 → LαH) + Γ(N1 → L̄αH")
m̃

α
1 ≡

|Y1α|2v2

M1

YB ≈ P
αεα

N1
η(m̃α

1 )
ετ
N1
! εe

N1
, εµ

N1
m̃τ

1 ! m̃e
1, m̃

µ
1


