Leptogenesis and LFV in the

left-right symmetric seesaw mechanism

Stéphane Lavignac (SPhT Saclay)

- introduction
- reconstruction of the right-handed neutrino spectrum
- implications for leptogenesis in SO (I0) models
- implications for lepton flavour violation
- conclusions
based on: • P. Hosteins, S. L. and C. Savoy, hep-ph/0606078
- A. Abada, P. Hosteins, F.-X. Josse-Michaux and S. L. (in progress)

SUSY 07
Karlsruhe, Germany, June 26 - August I, 2007

Introduction

The most popular explanation for the smallness of neutrino masses is the (type I) seesaw mechanism

$$
\Rightarrow \quad m_{\nu} \sim \frac{y^{2} v^{2}}{M_{R}}
$$

The seesaw mechanism cannot be directly tested, but it has observable consequences:

- leptogenesis [Fukugita, Yanagida]
- lepton flavour violation (LFV) in Susy theories [Borzumati, Masiero]

A lot of efforts have been devoted to their study in the recent years. In particular, conditions for successful leptogenesis have been obtained and many refinements have been added (finite T corrections, flavour effects...)

Most studies have been done in the framework of the type I [heavy righthanded neutrino exchange] seesaw mechanism, or assumed dominance of either type I or type II [heavy scalar $\operatorname{SU}(2)$ L triplet exchange] seesaw
\rightarrow it is interesting to investigate whether the generic situation where both contributions are comparable in size can lead to qualitatively different results

In extensions of the SM such as left-right symmetric theories and SO(I0) GUTs, the type I and type II seesaw mechanisms are simultaneously present and related by a left-right symmetry
\rightarrow appropriate framework to investigate the interplay between the type I and the type II seesaw mechanisms

Further motivation: right-handed neutrinos are suggestive of Grand Unification. However, successful leptogenesis is not so easy to achieve in $\mathrm{SO}(10)$ models with a type I seesaw mechanism (MD $\propto M u \Rightarrow$ very hierarchical right-handed neutrino masses, with $M_{1} \ll 10^{9} \mathrm{GeV}$)

The left-right symmetric seesaw mechanism

Type I+II seesaw mechanism:
$\Delta L=S U(2) L$ triplet with couplings fLij to lepton doublets

$$
M_{\nu}=f_{L} v_{L}-\frac{v^{2}}{v_{R}} Y^{T} f_{R}^{-1} Y \equiv M_{\nu}^{I I}+M_{\nu}^{I}
$$

Right-handed neutrino mass matrix: $\quad M_{R}=f_{R} v_{R}$

$$
V R \equiv\langle\Delta R\rangle \text { scale of } B-L \text { breaking }
$$

$\Delta R=S U(2) R$ triplet with couplings $f_{\text {Rij }}$ to right-handed neutrinos
vL is small since it is an induced vev: $\quad v_{L} \equiv\left\langle\Delta_{L}\right\rangle \sim v^{2} v_{R} / M_{\Delta_{L}}^{2}$
In a broad class of theories with underlying left-right symmetry (such as $\mathrm{SO}(\mathrm{IO})$ with a $\overline{126}_{H}$), one has $Y=Y^{T}$ and $f_{L}=f_{R} \equiv f$
\rightarrow left-right symmetric seesaw mechanism

In addition to the right-handed neutrinos, the $\mathrm{SU}(2) \mathrm{L}$ triplet contributes to leptogenesis and LFV
\rightarrow in order to study leptogenesis and/or LFV in a theory which predicts the Yij , need to reconstruct the fij (which determine both the triplet couplings and the Mi) as a function of the Yij and of the measured oscillation parameters

Reconstruction of the heavy neutrino mass spectrum

The starting point is the left-right symmetric seesaw formula:

$$
M_{\nu}=f v_{L}-\frac{v^{2}}{v_{R}} Y f^{-1} Y
$$

with f, Y complex and symmetric. The goal is to reconstruct f assuming that Y is known in the basis of charged lepton mass eigenstates

Akhmedov and Frigerio (hep-ph/0509299) showed that there are 2^{n} solutions for n generations, connected 2 by 2 by a "seesaw duality":

$$
f \longrightarrow \hat{f} \equiv \frac{M_{\nu}}{v_{L}}-f
$$

and provided explicit expressions for the fij up to $n=3$
In hep-ph/0606078, we proposed a simpler reconstruction procedure which employs complex orthogonal matrices

First rewrite the LR symmetric seesaw formula $M_{\nu}=\alpha f-\beta Y f^{-1} Y$ as

$$
Z=\alpha X-\beta X^{-1}
$$

with $\alpha \equiv v_{L}, \beta \equiv v^{2} / v_{R}$ and

$$
Z \equiv N_{Y}^{-1} M_{\nu}\left(N_{Y}^{-1}\right)^{T} \quad X \equiv N_{Y}^{-1} f\left(N_{Y}^{-1}\right)^{T}
$$

where N_{Y} is such that $Y=N_{Y} N_{Y}^{T}$ (Y invertible)
Z complex symmetric \Rightarrow can be diagonalized by a complex orthogonal matrix Oz if its eigenvalues zi are all distinct:

$$
Z=O_{Z} \operatorname{Diag}\left(z_{1}, z_{2}, z_{3}\right) O_{Z}^{T}, \quad O_{Z} O_{Z}^{T}=1
$$

Then X can be diagonalized by the same orthogonal matrix as Z, and its eigenvalues are the solutions of:

$$
z_{i}=\alpha x_{i}-\beta x_{i}^{-1} \quad(i=1,2,3)
$$

2 solutions x_{i}^{+}, x_{i}^{-}for each $\mathrm{i} \Rightarrow 2^{3}=8$ solutions for X , hence for f :

$$
f=N_{Y} O_{Z}\left(\begin{array}{ccc}
x_{1} & 0 & 0 \\
0 & x_{2} & 0 \\
0 & 0 & x_{3}
\end{array}\right) O_{Z}^{T} N_{Y}^{T}, \quad x_{i}=x_{i}^{ \pm}
$$

The corresponding right-handed neutrino masses $\mathrm{Mi}_{\mathrm{i}}=$ fi vr are obtained by diagonalizing f with a unitary matrix:

$$
f=U_{f}\left(\begin{array}{ccc}
f_{1} & 0 & 0 \\
0 & f_{2} & 0 \\
0 & 0 & f_{3}
\end{array}\right) U_{f}^{T}, \quad U_{f} U_{f}^{\dagger}=\mathbf{1}
$$

and the couplings of the Nr mass eigenstates are $U_{f}^{\dagger} Y$

Properties of the solutions

We denote the 2 solutions of $z_{i}=\alpha x_{i}-\beta x_{i}^{-1}$ by:

$$
x_{i}^{ \pm} \equiv \frac{z_{i} \pm \sqrt{z_{i}^{2}+4 \alpha \beta}}{2 \alpha}
$$

$(+,+,+)$ refers to the solution $\left(x_{1}^{+}, x_{2}^{+}, x_{3}^{+}\right),(+,+,-)$to $\left(x_{1}^{+}, x_{2}^{+}, x_{3}^{-}\right)$, etc
In the large vr limit $\left(4 \alpha \beta \ll\left|z_{1}\right|^{2}\right)$:

$$
\begin{array}{ll}
x_{i}^{+} \simeq \frac{z_{i}}{\alpha}(\text { "type II branch" }) & f^{(+,+,+)} \longrightarrow \frac{M_{\nu}}{v_{L}} \\
x_{i}^{-} \simeq-\frac{\beta}{z_{i}}(\text { "type I branch" }) & f^{(-,-,-)} \longrightarrow-\frac{v^{2}}{v_{R}} Y M_{\nu}^{-1} Y
\end{array}
$$

The remaining 6 solutions correspond to mixed cases in which Mv receives significant contributions from both seesaw mechanisms

In the small vr limit $\left(\left|z_{3}\right|^{2} \ll 4 \alpha \beta\right)$:

$$
x_{i}^{ \pm} \simeq \pm \sqrt{\beta / \alpha} \quad f^{(\pm, \pm, \pm)} \longrightarrow \pm \sqrt{\beta / \alpha} Y
$$

If Y is hierarchical, $f_{i} \longrightarrow \sqrt{\beta / \alpha} y_{i}$ holds for all 8 solutions

A case study: SO(I0) models with two 10 's and a $\overline{126}$ in the Higgs sector

$$
\begin{gathered}
W \ni Y_{i j}^{(1)} 16_{i} 16_{j} 10_{1}+Y_{i j}^{(2)} 16_{i} 16_{j} 10_{2}+f_{i j} 16_{i} 16_{j} \overline{126} \\
Y^{(1)}, Y^{(2)} \text { symmetric } \quad \overline{126} \ni \Delta_{L}, \Delta_{R} \text { with } f_{L}=f_{R}=f
\end{gathered}
$$

Assuming that the doublets in the $\overline{126}$ have no vev, one has:

$$
Y=M_{u} / v \quad M_{d}=M_{e}
$$

Then, for a given choice of the neutrino parameters and of the high energy phases contained in Mu, Y and $M v$ are known and f can be reconstructed as a function of the B-L breaking scale VR and of β / α
$\beta / \alpha=v^{2} / v_{L} v_{R}$ depends on the model. Perturbativity of the fij couplings constrains $\beta / \alpha \leq \mathrm{O}(\mathrm{I})$ and restricts the range of vR

Plots: normal hierarchy with $m_{1}=10^{-3} \mathrm{eV}, \sin ^{2} \theta_{13}=0.009, \delta=0$ and all Majorana and high-energy phases vanish $-\beta=\alpha$

Features of the right-handed neutrino spectrum

- at large vr, the solutions (+,+,+) and (-,-,-) tend to the type II (triplet exchange) and type I (heavy neutrino exchange) cases, respectively:

$$
\begin{array}{ll}
(+,+,+): & M_{1}: M_{2}: M_{3} \sim m_{1}: m_{2}: m_{3} \\
(-,-,-): & M_{1}: M_{2}: M_{3} \sim m_{u}^{2}: m_{c}^{2}: m_{t}^{2}
\end{array}
$$

- at small vR, the type I and type II contribution compensate for each other in such a way that $\quad M_{1}: M_{2}: M_{3} \sim m_{u}: m_{c}: m_{t}$
- 4 solutions are characterized by $\quad M_{1} \sim 10^{5} \mathrm{GeV}$
- 2 solutions are characterized by $\quad M_{1} \sim 10^{9} \mathrm{GeV}$

Mixing angles

$$
f=U_{f}\left(\begin{array}{ccc}
f_{1} & 0 & 0 \\
0 & f_{2} & 0 \\
0 & 0 & f_{3}
\end{array}\right) U_{f}^{T} \Longrightarrow U_{f}^{\dagger} Y \quad \begin{gathered}
\text { Dirac couplings } \\
\text { in the basis of NR } \\
\text { mass eigenstates }
\end{gathered}
$$

- 2 solutions have RHN mixing angles very close to the CKM angles
- in the other 6 solutions, the mixing angles are close to the CKM angles at small vR, then take larger values at large vR

Implications for leptogenesis

Standard (type I) leptogenesis: out-of equilibrium decays of the heavy RH neutrinos \Rightarrow lepton asymmetry \Rightarrow conversion into a baryon asymmetry by sphaleron processes
[Fukugita, Yanagida]
CP asymmetry due to interference between tree and I-loop diagrams:

$\epsilon_{N_{1}} \equiv \frac{\Gamma\left(N_{1} \rightarrow L H\right)-\Gamma\left(N_{1} \rightarrow \bar{L} H^{\star}\right)}{\Gamma\left(N_{1} \rightarrow L H\right)+\Gamma\left(N_{1} \rightarrow \bar{L} H^{\star}\right)} \simeq \frac{3}{16 \pi} \sum_{k} \frac{\operatorname{Im}\left[\left(Y Y^{\dagger}\right)_{k 1}^{2}\right]}{\left(Y Y^{\dagger}\right)_{11}} \frac{M_{k}}{M_{1}} \quad \begin{aligned} & \text { Covi, Roulet,Vissani } \\ & \text { Buchmüller, Plümacher }\end{aligned}$ (assuming $M_{1} \ll M_{2}, M_{3}$)

Final baryon asymmetry: $\quad Y_{B} \equiv \frac{n_{B}-n_{\bar{B}}}{s}=-1.4 \times 10^{-3} \eta \epsilon_{N_{1}}$

$$
\text { (} \eta=\text { efficiency factor) }
$$

To generate the observed baryon asymmetry, $Y_{B}=(8.7 \pm 0.3) \times 10^{-11}$, need $M_{1} \gtrsim 10^{9} \mathrm{GeV}$ [Davidson, Ibarra], unless $M_{1} \simeq M_{2}$ (resonant leptogenesis)

The Davidson-Ibarra bound is problematic in $\mathrm{SO}(\mathrm{I} 0)$ GUTs with $\mathrm{Y} \propto \mathrm{Mu}$, which leads to $M_{1} \ll 10^{9} \mathrm{GeV}$

Type I+II leptogenesis: when $M 1 \ll M \Delta L$, the $S U(2)$ L triplet affects leptogenesis mainly through its contribution to the CP asymmetry of N_{1}

$$
\epsilon_{N_{1}}^{I I} \simeq \frac{3}{8 \pi} \sum_{k, l} \frac{\operatorname{Im}\left[Y_{1 k} Y_{1 l} f_{k l}^{\star} v_{L}\right]}{\left(Y Y^{\dagger}\right)_{11} v^{2}} M_{1}
$$

Hambye, Senjanovic - Antusch, King

The total CP asymmetry $\epsilon_{N_{1}}=\epsilon_{N_{1}}^{I}+\epsilon_{N_{1}}^{I I}$ depends on the reconstructed fij couplings, and is very sensitive to the high- and low-energy phases

Among the 8 solutions, 3 different patterns emerge for leptogenesis:
-2 solutions with a rising $M_{1} \Rightarrow$ large $\epsilon^{\prime} N_{1}$ for large V_{R}

- 2 solutions with $M_{1} \sim 10^{9} \mathrm{GeV}$
- 4 solutions with $M_{1} \sim 10^{5} \mathrm{GeV} \Rightarrow \mathrm{EN} 1$ too small, but $M_{2} \sim 10^{10} \mathrm{GeV}$ or rises with $\mathrm{VR} \Rightarrow$ the observed baryon asymmetry could be generated from N_{2} decays [Di Bari -Vives]

Computation of the baryon asymmetry

Solve the Boltzmann equations with flavour effects and decays of N_{1} and N_{2}
Relevant quantities:
-flavour-dependent CP asymmetries:

$$
\epsilon_{N_{i}}^{\alpha} \equiv \frac{\Gamma\left(N_{i} \rightarrow L_{\alpha} H\right)-\Gamma\left(N_{i} \rightarrow \bar{L}_{\alpha} H^{\star}\right)}{\Gamma\left(N_{i} \rightarrow L_{\alpha} H\right)+\Gamma\left(N_{i} \rightarrow \bar{L}_{\alpha} H^{\star}\right)}
$$

- wash-out processes: $\Delta \mathrm{L}$ and N_{3} very heavy \Rightarrow associated wash-out processes suppressed. Furthermore, we neglect $\Delta L=2$ processes since we deal with masses M_{1} and $\mathrm{M}_{2}<10^{12} \mathrm{GeV}$
\Rightarrow only inverse decays and $\Delta L=1$ scatterings associated with N_{1} and N_{2} enter the Boltzmann equations. The relevant washout parameters are:

$$
\tilde{m}_{i}^{\alpha} \equiv \frac{\left|Y_{i \alpha}\right|^{2} v^{2}}{M_{i}}
$$

Both the $\epsilon_{N_{i}}^{\alpha}$ and the \tilde{m}_{i}^{α} depend on the Mi and on the Yia, hence on the reconstructed fij couplings

Results

Inputs: normal hierarchy with $m_{1}=10^{-3} \mathrm{eV}, \sin ^{2} \theta_{13}=0.009, \delta=0$ and various choices of the Majorana and high-energy phases $-\beta / \alpha=0.1-\mathrm{Md}=\mathrm{Me}$

solution +++

no phase
$\phi_{2}^{u}=\pi / 4$
$\phi_{2}^{\nu}=\pi / 4$

Tension with gravitino overproduction above $v_{R} \sim 10^{13} \mathrm{GeV}\left(M_{1}>10^{10} \mathrm{GeV}\right)$
solution +-+

This solution fails to generate the observed baryon asymmetry for hierarchical light neutrino masses and $\mathrm{Md}=\mathrm{Me}$
[see Akhmedov et al. (hep-ph/06I2I94) and the talk by T. Hällgren in the cosmology session for a discussion of the inverted hierarchy case]

solution ---

Flavour effects matter: the most asymmetrically produced flavour in N_{2} decays is the least erased by N_{1} inverse decays. Still the baryon asymmetry generated from N_{2} decays lies below the observed level

Corrections to the mass relation $M_{d}=\mathrm{Me}_{\mathrm{e}}$

The above results assumed $M_{d}=M_{e}$, but this relation is in conflict with experimental data \Rightarrow must add corrections, e.g. from

$$
\frac{\kappa_{i j}}{\Lambda} 16_{i} 16_{j} 10_{H} 45_{H}
$$

Assuming that $\langle 45 \mathrm{H}>$ is in the B -L direction, and that $<10 \mathrm{H}\rangle$ does not contribute to up-type fermion masses, $M_{D}=M_{u}$ is preserved but

$$
M_{d}=\left(Y_{10}^{d}+\frac{\left\langle 45_{H}\right\rangle}{\Lambda} \kappa\right) v_{d} \quad M_{e}=\left(Y_{10}^{d}-3 \frac{\left\langle 45_{H}\right\rangle}{\Lambda} \kappa\right) v_{d}
$$

This affects the fij by introducing a mismatch Um between the bases of charged lepton and down quark mass eigenstates, yielding

$$
M_{D}=U_{m}^{T} U_{q}^{T}\left(\begin{array}{ccc}
m_{u} & 0 & 0 \\
0 & m_{c} & 0 \\
0 & 0 & m_{t}
\end{array}\right) U_{q} U_{m}
$$

in the basis of charged lepton mass eigenstates

Results

Inputs: normal hierarchy with $m_{1}=10^{-3} \mathrm{eV}, \sin ^{2} \theta_{13}=0.009, \delta=0$ - various choices of Um and of the Majorana and high-energy phases $-\beta / \alpha=0.1$

Tension with gravitino overproduction above $v_{R} \sim 10^{13} \mathrm{GeV}\left(M_{1}>10^{10} \mathrm{GeV}\right)$
solution +++

Same inputs as before, but with corrections to $\mathrm{Md}_{\mathrm{d}}=\mathrm{Me}$ (for different choices of Um reproducing the correct down quark and charged lepton masses). Still conflict with upper bound on TR above $v_{R} \sim 10^{13} \mathrm{GeV}$
solution +-+

Successful leptogenesis possible for $v_{R} \gtrsim 10^{13} \mathrm{GeV}$ (with $M_{1} \lesssim 10^{10} \mathrm{GeV}$). The corrections to $M_{d}=$ Me play a crucial role here (not enough baryon asymmetry produced for Um = 1) [see Akhmedov et al. (hep-ph/0612194) and the talk by T. Hällgren in the cosmology session for a discussion of the inverted hierarchy case]
solution ---

The baryon asymmetry generated from N_{2} decays (with $M_{2} \sim 10^{10} \mathrm{GeV}$) could marginally explain the observed value. For this solution too the corrections to $\mathrm{Md}_{\mathrm{d}}=$ Me play a crucial role

Implications for lepton flavour violation

Flavour violation in the slepton sector induces LFV processes such as $\mu \rightarrow \mathrm{e} \gamma$ or $\tau \rightarrow \mu \gamma$

Heavy states with LFV couplings induce flavour-violating slepton mass terms radiatively. The contribution of the RH neutrinos and of the scalar triplet [Borzumati, Masiero; Rossi] can be estimated by (leading-log approximation + universality among soft terms at Mu):

$$
\left(m_{\tilde{L}}^{2}\right)_{i j} \simeq-\frac{3 m_{0}^{2}+A_{0}^{2}}{8 \pi^{2}} C_{i j}, \quad\left(m_{\tilde{e}_{R}}^{2}\right)_{i j} \simeq 0, \quad A_{i j}^{e} \simeq-\frac{3}{8 \pi^{2}} A_{0} y_{e_{i}} C_{i j}
$$

where the Cij's encapsulate the dependence on the seesaw parameters:

$$
C_{i j} \equiv \sum_{k} Y_{k i}^{\star} Y_{k j} \ln \left(\frac{M_{U}}{M_{k}}\right)+3\left(f f^{\dagger}\right)_{i j} \ln \left(\frac{M_{U}}{M_{\Delta_{L}}}\right)
$$

[in the following, we take $M u=10^{17} \mathrm{GeV}$ and $\mathrm{M} \Delta \mathrm{L}=\mathrm{vR}$]

Experimental upper limits on the LFV decays $\mathrm{li} \rightarrow \mathrm{lj} \gamma$ can be turned into upper bounds on the Cij's as a function of the supersymmetric mass parameters and of $\tan \beta$:

S.L., Masina, Savoy

For $\tan \beta=10$ and $\mathrm{m}_{0}, \mathrm{M}_{\mathrm{I}} / 2 \leq \mathrm{O}(\mathrm{I} \mathrm{TeV})$, we obtain the "experimental" upper bounds $\left|\mathrm{C}_{23}\right| \leq 10$ (from $\tau \rightarrow \mu \gamma$) and $\left|\mathrm{C}_{12}\right| \leq 0$. ((from $\mu \rightarrow \mathrm{e} \gamma$)

We can then compare the predicted Cij's for a given solution f with these "experimental" upper bounds:

Figure 9: Coefficients C_{12} and C_{23} as a function of v_{R} for the solutions $(+,+,+)$ and $(-,-,-)$ in the case of a hierarchical light neutrino mass spectrum with $m_{1}=10^{-3} \mathrm{eV}, \beta=\alpha$, and no CP violation beyond the CKM phase. The green [light grey] curve corresponds to $\left|C_{23}\right|$, and the blue [black] curve to $\left|C_{12}\right|$. The horizontal lines indicate the "experimental" constraints $\left|C_{23}\right|<10$ and $\left|C_{12}\right|<0.1$ (see text).

The predictions lie significantly below the experimental bounds, except in the large VR region where, depending on the supersymmetric parameters, $\mu \rightarrow \mathrm{e} \gamma$ can exceed its present upper limit

Due to the small CKM angles [VL = VCKM], the type II contribution always dominates, except in the large vr region of solutions (-,-,-) [type I limit] and (+,-,-)

Conclusions

- The possibilities to account for the observed neutrino data is much richer in the left-right symmetric seesaw mechanism than in the case of type I or type II dominance, with interesting implications for leptogenesis and LFV
- In particular, the mixed solutions where both seesaw mechanisms give a significant contribution to neutrino masses provide new opportunities for successful leptogenesis in SO(I0) GUTs
(the final asymmetry strongly depends on the values of the Yukawa couplings, so a correct description of charged fermion masses is an important ingredient in the analysis)

Back-up slides

Note: diagonalization of a complex symmetric matrix by a complex orthogonal matrix
I) the eigenvalues of \mathbf{Z} are the roots of $\operatorname{Det}(Z-z \mathbf{1})=0$
2) the eigenvectors associated with zi are the solutions of $Z . \vec{v}=z_{i} \vec{v}$

It is always possible to find solutions of the latter equation, but in case of multiple solutions, it is not always possible to find an orthonormal basis of the eigenspace. The problem arises when one non-trivial solution has a zero norm in the $\mathrm{SO}(3, \mathrm{C})$ sense, i.e. $\vec{v} \cdot \vec{v}=0$; then Z cannot be diagonalized.

If all eigenvalues of Z are distinct, the eigenvectors automatically satisfy $\vec{v} \cdot \vec{v} \neq 0$, hence \mathbf{Z} is diagonalizable (it can be written as $O_{Z} \operatorname{Diag}\left(z_{1}, z_{2}, z_{3}\right) O_{Z}^{T}$)

Flavour effects in leptogenesis

Barbieri, Creminelli, Strumia, Tetradis
Endoh et al. - Pilaftsis et al. - Nardi et al. - Abada et al. Blanchet, Di Bari, Raffelt - Pascoli, Petcov, Riotto - ...
"one-flavour approximation": leptogenesis described in terms of a single direction in flavour space, the lepton $\mathcal{L}_{1} \propto \sum_{\alpha} Y_{1 \alpha} L_{\alpha}$ to which N_{1} couples \Rightarrow valid as long as the charged lepton Yukawas $\lambda \alpha$ are out of equilibrium

At $T \lesssim 10^{12} \mathrm{GeV}, \lambda_{\mathrm{T}}$ is in equilibrium and destroys the coherence of \mathcal{L}_{1} $\Rightarrow 2$ relevant flavours: L_{τ} and a combination of $L e$ and L_{μ}

At $T \lesssim 10^{9} \mathrm{GeV}, \lambda_{\tau}$ and λ_{μ} are in equilibrium \Rightarrow must distinguish between Le, L_{μ} and L_{τ}

Relevant parameters for the discussion of flavour effects:

$$
\epsilon_{N_{1}}^{\alpha} \equiv \frac{\Gamma\left(N_{1} \rightarrow L_{\alpha} H\right)-\Gamma\left(N_{1} \rightarrow \bar{L}_{\alpha} H^{\star}\right)}{\Gamma\left(N_{1} \rightarrow L_{\alpha} H\right)+\Gamma\left(N_{1} \rightarrow \bar{L}_{\alpha} H^{\star}\right)} \quad \tilde{m}_{1}^{\alpha} \equiv \frac{\left|Y_{1 \alpha}\right|^{2} v^{2}}{M_{1}}
$$

qualitatively $Y_{B} \approx \sum_{\alpha} \epsilon_{N_{1}}^{\alpha} \eta\left(\tilde{m}_{1}^{\alpha}\right) \Rightarrow$ can deviate from the one-flavour approximation if e.g. $\epsilon_{N_{1}}^{\tau} \gg \epsilon_{N_{1}}^{e}, \epsilon_{N_{1}}^{\mu}$ and $\tilde{m}_{1}^{\tau} \ll \tilde{m}_{1}^{e}, \tilde{m}_{1}^{\mu}$

