A_4 and its double-covering T' as flavor symmetries

C. Hagedorn

hagedorn@mpi-hd.mpg.de

Max-Planck-Institut für Kernphysik
Heidelberg
Germany

Observations

Masses of the charged fermions are strongly hierarchical

$$m_u: m_c: m_t \approx \lambda^8: \lambda^4: 1$$
, $m_d: m_s: m_b \approx \lambda^4: \lambda^2: 1$, $m_e: m_\mu: m_\tau \approx \lambda^5: \lambda^2: 1$ where $\lambda \approx \theta_C \approx 0.22$

- \blacksquare Mass hierarchy in the ν sector is milder, ordering till now unknown.
- Mixing parameters: small mixings for quarks, large mixings for leptons.
- for lepton mixing special structures are allowed:
 - "tri-bimaximal" (TB): (1σ) $\sin^2(\theta_{12}^{TB}) = \frac{1}{3}$, $\sin^2(\theta_{23}^{TB}) = \frac{1}{2}$, $\sin^2(\theta_{13}^{TB}) = 0$.
 - " μ - τ " symmetric (MTS): $\sin^2(\theta_{23}^{MTS}) = \frac{1}{2}, \quad \sin^2(\theta_{13}^{MTS}) = 0.$
- \Rightarrow All these issues need a theoretical description: Flavor symmetry $G_F!$ _ good candidates are A_4 and T'

Basics of the model

- the flavor symmetry $G_F=A_4$ or $G_F=T^\prime$ is spontaneously broken at high energies
- low energy effective theory: MSSM
- ullet breaking of G_F is induced by VEVs of flavon fields which a singlets under the SM gauge groups
- lacksquare (MS)SM fermions transform under G_F
- the MSSM Higgs doublets $h_{u,d}$ are singlets under G_F

 \blacksquare Lepton generations transform according to A_4 reps.:

$$l_i = \begin{pmatrix} \nu_i \\ e_i \end{pmatrix}_L \sim 3$$

$$e^c \sim 1 , \quad \mu^c \sim 1'' , \quad \tau^c \sim 1'$$

$$h_{u,d} \sim 1$$

<u>results</u>:

- TB mixing in the lepton sector at leading order, corrections at level $\lambda^2 \approx 0.04$
- but no explanation of the quark sector idea that quarks transform like charged leptons leads to $V_{CKM}=\mathbb{1}$ at leading order, but corrections are only of order $\lambda^2\approx 0.04$ instead of $\lambda=\theta_C$ (other models: Ma (2002); He et al. (2006); Bazzocchi et al. (2007))

Group Theory of A_4

- The group A_4 is the symmetry group of a regular tetrahedron, group of even permutations of four objects
- Order of the group: 12
- Four irreducible representations: 1, 1', 1'' and 3
- Generator relations for generators S and T:

$$S^2 = 1$$
, $T^3 = 1$, $(ST)^3 = 1$.

rep.	S	T
1	1	1
1'	1	ω
1''	1	ω^2
3	$\frac{1}{3} \begin{pmatrix} -1 & 2\omega & 2\omega^2 \\ 2\omega^2 & -1 & 2\omega \\ 2\omega & 2\omega^2 & -1 \end{pmatrix}$	$\left(\begin{smallmatrix}1&0&0\\0&\omega&0\\0&0&\omega^2\end{smallmatrix}\right)$

$$(\omega = e^{\frac{2\pi i}{3}})$$

lacksquare Quark generations transform according to T' reps.:

$$D_q = \begin{pmatrix} q_1 \\ q_2 \end{pmatrix}, D_u^c = \begin{pmatrix} u^c \\ c^c \end{pmatrix}, D_d^c = \begin{pmatrix} d^c \\ s^c \end{pmatrix} \sim 2''$$

$$q_3, t^c, b^c \sim 1$$

together with the leptons in A_4 -like reps.:

$$l_i = \begin{pmatrix} \nu_i \\ e_i \end{pmatrix}_L \sim 3$$
$$e^c \sim 1 , \quad \mu^c \sim 1'' , \quad \tau^c \sim 1'$$

- results :
 - TB mixing in the lepton sector at leading order, corrections are still at level $\lambda^2 \approx 0.04$
 - $m_{u,d,s,c} \ll m_{b,t}$, all data can be accommodated at subleading order in the quark sector, esp. θ_C

Group Theory of T'

- In the group T' is the double covering of the group A_4 . (Compare to SU(2) and SO(3))
- Order of the group: 24
- Irred. reps: 1, 1', 1'', 3 and 2, 2', 2''
- ullet Generator relations for generators S and T:

$$S^2 = \mathbb{R} , \quad T^3 = 1 , \quad (ST)^3 = 1 , \quad \mathbb{R}^2 = 1.$$

rep.	S	T
2	A_1	ωA_2
2'	A_1	$\omega^2 A_2$
2′′	A_1	A_2

$$\begin{array}{lll} A_1 & = & -\frac{1}{\sqrt{3}} \left(\begin{smallmatrix} i & \sqrt{2}e^{i\pi/12} \\ -\sqrt{2}e^{-i\pi/12} & -i \end{smallmatrix} \right), \\ A_2 & = \left(\begin{smallmatrix} \omega & 0 \\ 0 & 1 \end{smallmatrix} \right) \end{array}$$

Particle Content of the T' Model

	LEPTONS				QUARKS				FLAVONS						
Field	l	e^c	μ^c	$ au^c$	D_q	D_u^c	D_d^c	q_3	t^c	b^c	$arphi_T$	$arphi_S$	$\xi, ilde{\xi}$	η	ξ''
G_F	3	1	1"	1'	2"	2"	2"	1	1	1	3	3	1	2′	1"
Z_3	ω	ω^2	ω^2	ω^2	ω	ω^2	ω^2	ω	ω^2	ω^2	1	ω	ω	1	1
U(1)	0	2n	n	0	0	n	0	0	0	0	0	0	0	0	0

additionally needed:

 $ightharpoonup Z_3$ symmetry to separate charged fermion and neutrino sector:

$$\{\varphi_T, \eta, \xi''\} \rightarrow m_l, m_u, m_d \text{ and } \{\varphi_S, \xi, \tilde{\xi}\} \rightarrow m_{\nu}$$

• U(1) for hierarchy $m_s \ll m_c$, $m_e \ll m_\mu \ll m_\tau$ (field θ : $Q(\theta) = -1$)

Superpotential

$$w = w_l + w_q + w_d$$

for leptons:

$$w_{l} = y_{e}e^{c}(\varphi_{T}l)h_{d}/\Lambda \left(\frac{\theta}{\Lambda}\right)^{2n} + y_{\mu}\mu^{c}(\varphi_{T}l)'h_{d}/\Lambda \left(\frac{\theta}{\Lambda}\right)^{n} + y_{\tau}\tau^{c}(\varphi_{T}l)''h_{d}/\Lambda + (x_{a}\xi + \tilde{x}_{a}\tilde{\xi})(ll)h_{u}h_{u}/\Lambda^{2} + x_{b}(\varphi_{S}ll)h_{u}h_{u}/\Lambda^{2}$$

for quarks:

$$w_{q} = y_{t} (t^{c}q_{3}) h_{u} + y_{b} (b^{c}q_{3}) h_{d} + y_{1} (\varphi_{T}D_{u}^{c}D_{q}) h_{u} / \Lambda \left(\frac{\theta}{\Lambda}\right)^{n} + y_{5} (\varphi_{T}D_{d}^{c}D_{q}) h_{d} / \Lambda + y_{2} \xi'' (D_{u}^{c}D_{q}) h_{u} / \Lambda \left(\frac{\theta}{\Lambda}\right)^{n} + y_{6} \xi'' (D_{d}^{c}D_{q}) h_{d} / \Lambda + \{y_{3} t^{c}(\eta D_{q}) + y_{4} (D_{u}^{c}\eta) q_{3} \left(\frac{\theta}{\Lambda}\right)^{n}\} h_{u} / \Lambda + \{y_{7} b^{c}(\eta D_{q}) + y_{8} (D_{d}^{c}\eta) q_{3}\} h_{d} / \Lambda$$

Higgs superpotential w_d : VEV structure:

$$G_S : \langle \varphi_S \rangle = (v_S, v_S, v_S) , \langle \xi \rangle = u , \langle \tilde{\xi} \rangle = 0 ,$$

$$G_T : \langle \varphi_T \rangle = (v_T, 0, 0) , \langle \eta \rangle = (v_1, 0) , \langle \xi'' \rangle = 0 .$$

Leading order

• charged leptons: $m_l = \frac{v_T}{\sqrt{2}\Lambda} v_d \ \mathrm{diag}(y_e \ \left(\frac{\langle \theta \rangle}{\Lambda}\right)^{2n}, y_\mu \ \left(\frac{\langle \theta \rangle}{\Lambda}\right)^n, y_ au)$

neutrinos:
$$m_{\nu} = \frac{v_u^2}{\Lambda} \left(\begin{array}{ccc} a + 2b/3 & -b/3 & -b/3 \\ -b/3 & 2b/3 & a - b/3 \\ -b/3 & a - b/3 & 2b/3 \end{array} \right) \Rightarrow \boxed{\text{TB mixing!}}$$

with masses: $\frac{v_u^2}{\Lambda}$ diag(a+b,a,-a+b) and $a=x_a\,\frac{u}{\Lambda}$, $b=x_b\,\frac{v_S}{\Lambda}$

up-type and down-type quarks:

$$m_{u} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & y_{1}v_{\mathsf{T}}/\Lambda \left(\frac{\langle\theta\rangle}{\Lambda}\right)^{n} & y_{4}v_{1}/\Lambda \left(\frac{\langle\theta\rangle}{\Lambda}\right)^{n} \\ 0 & y_{3}v_{1}/\Lambda & y_{t} \end{pmatrix} v_{u} , \quad m_{d} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_{5}v_{\mathsf{T}}/\Lambda & y_{8}v_{1}/\Lambda \\ 0 & y_{7}v_{1}/\Lambda & y_{b} \end{pmatrix} v_{d}$$

$$\Rightarrow m_b$$
 and m_t large, $\frac{m_c}{m_t} \sim \mathcal{O}(\lambda^4)$, $\frac{m_s}{m_b} \sim \mathcal{O}(\lambda^2)$, $|V_{cb}| \sim \mathcal{O}(\lambda^2)$

Higgs superpotential (I)

$$w_{d} = M(\varphi_{T}^{0} \varphi_{T}) + g(\varphi_{T}^{0} \varphi_{T} \varphi_{T}) + g_{1}(\varphi_{S}^{0} \varphi_{S} \varphi_{S}) + g_{2} \tilde{\xi} (\varphi_{S}^{0} \varphi_{S})$$

$$+ g_{3} \xi^{0} (\varphi_{S} \varphi_{S}) + g_{4} \xi^{0} \xi^{2} + g_{5} \xi^{0} \xi \tilde{\xi} + g_{6} \xi^{0} \tilde{\xi}^{2}$$

$$+ M_{\eta} (\eta \eta^{0}) + M_{\xi} \xi'' \xi'^{0} + g_{7} \xi'' (\varphi_{T}^{0} \varphi_{T})' + g_{8} (\varphi_{T}^{0} \eta \eta)$$

$$+ g_{9} (\varphi_{T} \eta \eta^{0}) + g_{10} \xi'^{0} (\varphi_{T} \varphi_{T})''$$

- further fields needed: "driving fields" $\varphi_T^0 \sim (3,1)$, $\varphi_S^0 \sim (3,\omega)$, $\xi^0 \sim (1,\omega)$, $\eta^0 \sim (2'',1)$, $\xi'^0 \sim (1',1)$ under (T',Z_3)
- introduce $U(1)_R$ to construct Higgs potential:

$$Q(\mathsf{matter}) = +1 \;,\;\; Q(\mathsf{Higgs}) = 0 \;,\;\; Q(\mathsf{driving field}) = +2$$

 $\rightarrow w_d$ linear in driving fields (Yukawa couplings are $U(1)_R$ invariant)

Higgs superpotential (II)

$$\begin{array}{lll} \frac{\partial w}{\partial \varphi_{01}^S} & = & g_2 \tilde{\xi} \varphi_{S1} + \frac{2g_1}{3} (\varphi_{S_1}^2 - \varphi_{S_2} \varphi_{S_3}) = 0 \\ \\ \frac{\partial w}{\partial \varphi_{02}^S} & = & g_2 \tilde{\xi} \varphi_{S3} + \frac{2g_1}{3} (\varphi_{S_2}^2 - \varphi_{S_1} \varphi_{S_3}) = 0 \\ \\ \frac{\partial w}{\partial \varphi_{03}^S} & = & g_2 \tilde{\xi} \varphi_{S2} + \frac{2g_1}{3} (\varphi_{S_3}^2 - \varphi_{S_1} \varphi_{S2}) = 0 \\ \\ \frac{\partial w}{\partial \xi_0} & = & g_4 \xi^2 + g_5 \xi \tilde{\xi} + g_6 \tilde{\xi}^2 + g_3 (\varphi_{S_1}^2 + 2\varphi_{S_2} \varphi_{S_3}) = 0 \\ \\ \frac{\partial w}{\partial \varphi_{T_1}^0} & = & M \varphi_{T_1} + \frac{2g}{3} (\varphi_{T_1}^2 - \varphi_{T_2} \varphi_{T_3}) + g_7 \xi'' \varphi_{T_2} + i g_8 \eta_1^2 = 0 \\ \\ \frac{\partial w}{\partial \varphi_{T_3}^0} & = & M \varphi_{T_3} + \frac{2g}{3} (\varphi_{T_2}^2 - \varphi_{T_1} \varphi_{T_3}) + g_7 \xi'' \varphi_{T_1} + (1 - i) g_8 \eta_1 \eta_2 = 0 \\ \\ \frac{\partial w}{\partial \varphi_{T_3}^0} & = & M \varphi_{T_2} + \frac{2g}{3} (\varphi_{T_3}^2 - \varphi_{T_1} \varphi_{T_2}) + g_7 \xi'' \varphi_{T_3} + g_8 \eta_2^2 = 0 \\ \\ \frac{\partial w}{\partial \eta_1^0} & = & -M_{\eta} \eta_2 + g_9 ((1 - i) \eta_1 \varphi_{T_3} - \eta_2 \varphi_{T_1}) = 0 \\ \\ \frac{\partial w}{\partial \eta_2^0} & = & M_{\eta} \eta_1 - g_9 ((1 + i) \eta_2 \varphi_{T_2} + \eta_1 \varphi_{T_1}) = 0 \\ \\ \frac{\partial w}{\partial \xi'^0} & = & M_{\xi} \xi'' + g_{10} (\varphi_{T_2}^2 + 2\varphi_{T_1} \varphi_{T_3}) = 0 \end{array}$$

Higgs superpotential (III)

- ullet separate set of eqs. for $\left\{ {{\varphi _S}_i,\xi ,\tilde \xi } \right\}$ and $\left\{ {{\varphi _T}_i,\eta _i,\xi ''} \right\}$
- distinct number of possible solutions
- ullet key feature: all VEV structures preserve non-trivial subgroups of T'

1.
$$Z_4$$
: $\langle \tilde{\xi} \rangle = 0$, $\langle \xi \rangle = u$, $\langle \varphi_S \rangle = (v_S, v_S, v_S)$, $v_S^2 = -\frac{g_4}{3g_3}u^2$ (G_S) $\langle \xi'' \rangle = -\frac{M}{g_7}$, $\langle \eta \rangle = (0,0)$, $\langle \varphi_T \rangle = (v_T, v_T, v_T)$, $v_T^2 = \frac{M}{3g_7g_{10}}$

2.
$$Z_3$$
: $\langle \xi'' \rangle = 0$, $\langle \eta \rangle = (v_1, 0)$, $\langle \varphi_T \rangle = (v_T, 0, 0)$, $v_1 \neq 0$, (G_T)

$$v_T = \frac{M_\eta}{q_9}$$

3.
$$Z_6$$
: $\langle \xi'' \rangle = 0$, $\langle \eta \rangle = (0,0)$, $\langle \varphi_T \rangle = (v_T, 0, 0)$, $v_T = -\frac{3M}{2g}$

• choose the desired minimum by constraining the sign of the soft masses $m_{\varphi_T}^2$, $m_{\varphi_S}^2$, m_{ξ}^2 , m_{η}^2 , ...

Subgroups of T'

subgroups are $D_2' \simeq Q$ and the abelian groups Z_6 , Z_4 , Z_3 and Z_2

T'	D_2'	Z_6	Z_4	Z_3	Z_2
1	1	1	1	1	1
1'	1		1		1
1''	1		1		1
2					
2'				1 +	
2′′				1 +	
3		1 +	1 +	1 +	3 1

1 is total singlet of the subgroup

for comparison:

A_4	D_2	Z_3	Z_2
1	1	1	1
1'	1		1
1′′	1		1
3		1 +	1 +

Leading order

• charged leptons: $m_l = \frac{v_T}{\sqrt{2}\Lambda} v_d \ \mathrm{diag}(y_e \ \left(\frac{\langle \theta \rangle}{\Lambda}\right)^{2n}, y_\mu \ \left(\frac{\langle \theta \rangle}{\Lambda}\right)^n, y_ au)$

neutrinos:
$$m_{\nu} = \frac{v_u^2}{\Lambda} \left(\begin{array}{ccc} a + 2b/3 & -b/3 & -b/3 \\ -b/3 & 2b/3 & a - b/3 \\ -b/3 & a - b/3 & 2b/3 \end{array} \right) \Rightarrow \boxed{\text{TB mixing!}}$$

with masses: $\frac{v_u^2}{\Lambda}$ diag(a+b,a,-a+b) and $a=x_a\,\frac{u}{\Lambda}$, $b=x_b\,\frac{v_S}{\Lambda}$

up-type and down-type quarks:

$$m_{u} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & y_{1}v_{\mathsf{T}}/\Lambda \left(\frac{\langle\theta\rangle}{\Lambda}\right)^{n} & y_{4}v_{1}/\Lambda \left(\frac{\langle\theta\rangle}{\Lambda}\right)^{n} \\ 0 & y_{3}v_{1}/\Lambda & y_{t} \end{pmatrix} v_{u} , \quad m_{d} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_{5}v_{\mathsf{T}}/\Lambda & y_{8}v_{1}/\Lambda \\ 0 & y_{7}v_{1}/\Lambda & y_{b} \end{pmatrix} v_{d}$$

$$\Rightarrow m_b$$
 and m_t large, $\frac{m_c}{m_t} \sim \mathcal{O}(\lambda^4)$, $\frac{m_s}{m_b} \sim \mathcal{O}(\lambda^2)$, $|V_{cb}| \sim \mathcal{O}(\lambda^2)$

Subleading order (I)

a.) take all terms up to $\mathcal{O}(\frac{1}{\Lambda^2})$ for charged fermions and all terms up to $\mathcal{O}(\frac{1}{\Lambda^3})$ for neutrinos, e.g.

$$(f^c l \varphi_T \varphi_T) \frac{h_d}{\Lambda^2}$$
, $(f^c l \eta \eta) \frac{h_d}{\Lambda^2}$ and $(\varphi_T \varphi_S)' (l l)'' \frac{h_u^2}{\Lambda^3}$, $\xi'' \xi (l l)' \frac{h_u^2}{\Lambda^3}$

b.) take all terms up to $\mathcal{O}(\frac{1}{\Lambda})$ in Higgs sector, e.g.

$$\frac{1}{\Lambda}(\varphi_T^0\,\varphi_T)\,(\varphi_T\,\varphi_T)$$
 and $\frac{1}{\Lambda}\,(\varphi_T^0\,\varphi_T)''\,\xi''\,\xi''$, $\frac{1}{\Lambda}\,(\varphi_T\,\eta)\,(\varphi_T^0\,\eta)$

 \rightarrow induce shifts of the VEVs v into $v + \delta v$: $\frac{\delta v}{\Lambda} \approx \left(\frac{v}{\Lambda}\right)^2 \approx \lambda^4$

results:

- important corrections to quarks are due to b.)
- contributions from a.) and b.) correct TB mixing
- corrections should be $\lesssim \lambda^2$ for TB mixing and at the same time reproduce θ_C in the quark sector (checked $\sqrt{\ }$)

Subleading order (II)

orders of mass matrix elements:

$$m_u = \begin{pmatrix} \lambda^8 & \lambda^6 & \lambda^6 \\ \lambda^6 & \lambda^4 & \lambda^4 \\ \lambda^4 & \lambda^2 & 1 \end{pmatrix} v_u , \quad m_d = \begin{pmatrix} \lambda^6 & \lambda^3 & \lambda^4 \\ \lambda^3 & \lambda^2 & \lambda^2 \\ \lambda^4 & \lambda^2 & 1 \end{pmatrix} v_d .$$

two predictions:

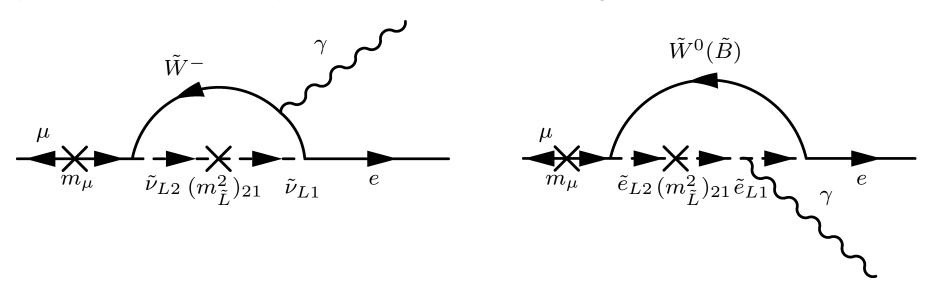
$$\sqrt{\frac{m_d}{m_s}} = |V_{us}| + \mathcal{O}(\lambda^2)$$
 and
$$\sqrt{\frac{m_d}{m_s}} = \left|\frac{V_{td}}{V_{ts}}\right| + \mathcal{O}(\lambda^2) \text{ (due to } |V_{ub}| \sim \mathcal{O}(\lambda^4) \text{)}$$

furthermore:

$$\frac{m_u}{m_c} \sim \mathcal{O}(\lambda^4) , \quad \frac{m_d}{m_s} \sim \mathcal{O}(\lambda^2) , \quad |V_{ud}| \approx |V_{cs}| \approx 1 + \mathcal{O}(\lambda^2) , \quad |V_{tb}| \approx 1 ,$$
$$|V_{us}| \approx |V_{cd}| \sim \mathcal{O}(\lambda) , \quad |V_{cb}| \approx |V_{ts}| \sim \mathcal{O}(\lambda^2) , \quad |V_{td}| \sim \mathcal{O}(\lambda^3) .$$

LFVs -prediction of $\mu \rightarrow e \gamma$ (I)

 $\mu
ightarrow e \gamma$ is mediated by sfermion-neutralino/chargino loops in the MSSM



In the MSSM with arbitrary soft terms the branching ratio for $\mu \to e \gamma$ exceeds the experimental bound

$$Br(\mu \to e\gamma) \lesssim 1.2 \times 10^{-11}$$
 (MEGA)

This bound will be further reduced by the MEG experiment:

$$\mathsf{Br}(\mu \to e\gamma) \lesssim \mathcal{O}(10^{-13})$$

LFVs - prediction of $\mu \rightarrow e \gamma$ (II)

Look at the soft masses for the sleptons: $(m_{\tilde{L}}^2)_{ij} \tilde{L}_i^{\dagger} \tilde{L}_j$ and $(m_{\tilde{e}}^2)_{ij} \tilde{e}_i^{c \star} \tilde{e}_j^c$. In general they are arbitrary, but with the use of the flavor symmetry $G_F = A_4$ or $G_F = T'$ they can be constrained. Since $l_i \sim 3$,

$$m_{\tilde{L}}^2 \propto 1$$

and since $e_i^c \sim 1 + 1'' + 1'$,

$$m_{ ilde{e}}^2 \propto \left(egin{array}{ccc} eta_e & 0 & 0 \ 0 & eta_\mu & 0 \ 0 & 0 & eta_ au \end{array}
ight)$$

at lowest order, i.e. without insertions of flavon fields. These insertions generate off-diagonal terms in the slepton mass matrices as well as the lepton mass matrices itself. Therefore $\mu \to e \gamma$ will be mediated, but all operators are now controlled by a symmetry.

Conclusion & Outlook

- T' model is a working low energy model which can explain lepton mixing (TB mixing) and properties of the quark sector at the same time
- ullet key feature is the VEV alignment and the preservation of non-trivial subgroups of T' in the charged fermion as well as the neutrino sector
- the model has further phenomenological imprints: LFVs, FCNCs and possibly also inflation

- still missing:
 - group theory reason for success of $A_4/T'/Z_3 \rtimes Z_7$
 - simpler mechanism for VEV alignment
 - GUT model with $SO(10) \times G_F$

Thank you.