

Outline

- Bs meson sector;
- Δ Ms: Mass difference;
- $\Delta \Gamma \mathrm{s}$: Width difference;
- $\phi \mathrm{s}: \mathrm{CP}$-violating phase angle;
- $A^{s} S L:$ Charge asymmetry;
- Combination results;
- Summary

Strange Properties of Beautiful Mesons

- Neutral mesons with fast oscillation rate $\begin{gathered}\text { u,c,t } \\ \left(\sim 18^{\frac{b}{b}} \mathrm{ps}^{-1}\right)\end{gathered}$

$$
i \frac{\mathrm{~d}}{\mathrm{~d} t}\binom{B_{s}^{0}}{\bar{B}_{s}^{0}}=\left(\begin{array}{cc}
M-\frac{i}{2} \Gamma & M_{12}-\frac{i}{2} \Gamma_{12} \\
M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*} & M-\frac{i}{2} \Gamma
\end{array}\right)\binom{B_{s}^{0}}{\bar{B}_{s}^{0}}
$$

- Flavour $B_{s}^{0}, \bar{B}_{s}^{0}$ and mass B_{L}, B_{H} eigenstates different

5 observables

M_{12} dominated by $b \rightarrow t \bar{t} s$

$$
\begin{array}{ll}
M_{s}=\frac{M_{H}+M_{L}}{2} & \Delta m_{s}=M_{H}-M_{L} \sim 2\left|M_{12}\right| \\
\Gamma_{s} \equiv \frac{1}{\bar{\tau}_{s}}=\frac{\Gamma_{L}+\Gamma_{H}}{2} & \Delta \Gamma_{s}=\Gamma_{L}-\Gamma_{H} \sim 2\left|\Gamma_{12}\right| \cos \phi_{s} \\
\left.M_{12}\right) & \quad \Gamma_{12} \text { dominated by } b \rightarrow c \bar{c} s
\end{array}
$$

$$
\phi_{s}=\arg \left(-\frac{M_{12}}{\Gamma_{12}}\right)
$$

Measuring Beyond SM effects

- M_{12} sensitive to effects of new physics, both through $\left|M_{12}\right|$ and $\arg \left(M_{12}\right)$.
- $\left|M_{12}\right|$ measured from $\Delta m_{s} \sim 2\left|M_{12}\right|$
- $\arg \left(M_{12}\right)$ can be obtained through $\quad \phi_{s}=\arg \left(-\frac{M_{12}}{\Gamma_{12}}\right)$
- Γ_{12} from tree level processes; new physics unlikely, however NP can enter width difference through $\Delta \Gamma_{s}=2\left|\Gamma_{12}\right| \cos \phi_{s} \approx \Delta \Gamma_{\mathrm{SM}} \cos \phi_{s}$ $b \rightarrow s \gamma$ could change Γ_{12}
- leads to decrease in $\Delta \Gamma_{s}$.
- Gluinos and squarks in MSSM box diagrams can compete with SM contributions,

Measuring B_{s} mesons at $D \varnothing$

- Tevatron: proton-antiproton collisions at $\sqrt{s}=1.96 \mathrm{TeV}$,
- Most B physics analyses utilise excellent 3-layer muon system with large $|\mathrm{n}|<2$ coverage.
- Vertexing and decay-length measurements using silicon and fiber-tracking systems, enclosed within 2 T field.
- Over $3 \mathrm{fb}^{-1}$ delivered by accelerator division to $D \varnothing$ since 2002.
- These analyses from $\sim \mid \mathrm{fb}^{-1}$ integrated luminosity.

Mass Difference $\Delta \mathrm{m}_{\mathrm{s}}$

- In 2006

DØ Collab. PRL 97021802 (2006)

- DØ first direct double-sided bound on $\Delta \mathrm{m}_{\mathrm{s}}$, rules out potential large effects from new physics
- CDF precision measurement.

$\Delta m_{s}=17.77 \pm 0.10($ stat $) \pm 0.07$ (syst) CDF Collab. PRL 97242003 (2006)
D \varnothing to update shortly with improved analysis, increased luminosity and additional decay modes.

Width Difference $\Delta \Gamma_{s}$

- Width difference in B_{s} system predicted in SM as

$$
\frac{\Delta \Gamma_{s}}{\Gamma_{s}}=0.127 \pm 0.024
$$

(A. Lenz, U. Nierste, hep-ph/06/2167).

- Effects from New Physics processes may reduce width difference

CP - even final states $\Delta \Gamma_{s} \uparrow$

- DØ results from:

CP - odd final states $\Delta \Gamma_{s} \downarrow$

- $\left.B_{s} \rightarrow D_{s}{ }^{*}\right) D_{s}{ }^{(*)}$,
- $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \phi$.

$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{(*)} \mathrm{D}_{\mathrm{s}}{ }^{\left({ }^{*}\right)}$

- Width difference $\Delta \Gamma_{s}=\Delta \Gamma_{s}^{\mathrm{CP}} \cos \phi_{s}$, where $\Delta \Gamma_{s}^{\mathrm{CP}} \equiv 2\left|\Gamma_{12}\right|=\Gamma($ even $)-\Gamma$ (odd) is the difference between the CP-even and CP-odd final-states.
- Decay of $B_{s} \rightarrow D_{s}{ }^{+} D_{s}{ }^{-}$is pure CP-even
- Under certain theoretical assumptions $\mathrm{D}_{\mathrm{s}}{ }^{*} \mathrm{D}_{\mathrm{s}}{ }^{(*)}$ is mainly CP-even.

Requires validation by experiment Some uncertainties in theoretical assumptions.

- Under these assumptions, measurement of branching fraction allows determination of the width difference $\Delta \Gamma_{s}^{\mathrm{CP}}$ $2 \operatorname{Br}\left(B_{s}^{0} \rightarrow D_{s}^{(*)} D_{s}^{(*)}\right)=\frac{\Delta \Gamma_{s}^{\mathrm{CP}}}{\Gamma_{s}}\left\{1+\mathcal{O}\left(\frac{\Delta \Gamma_{s}}{\Gamma_{s}}\right)\right\}$
- $\Delta \Gamma_{s}^{\mathrm{CP}}$ is independent to CP-violation, provides a further check on NP.

Event Selection

Results: $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{(*)} \mathrm{D}_{\mathrm{s}}{ }^{(*)}$

$N\left(D_{s}^{(*)} D_{s}^{(*)}\right)=13.4_{-6.0}^{+6.6}$ (b)

- Signal $\left.D_{s}{ }^{*}\right)_{s}{ }^{*}$: Joint production of $D_{s}\left(\Phi_{\mid} \mid \Pi\right)$ and Φ_{2} mesons,
- Background: uncorrelated production and peaking contributions,
- Increased precision from previous measurement (ALEPH).
- DØ measures

$$
\operatorname{Br}\left(B_{s}^{0} \rightarrow D_{s}^{(*)} D_{s}^{(*)}\right)=0.039_{-0.017}^{+0.019}(\text { stat })_{-0.015}^{+0.016}(\text { syst })
$$

- Allows indirect estimate of $\Delta \Gamma_{s}$ through:
$\frac{\Delta \Gamma_{s}^{C P}}{\Gamma_{s}} \approx 2 \operatorname{Br}\left(B_{s}^{0} \rightarrow D_{s}^{(*)} D_{s}^{(*)}\right)$

- Consistent with SM.

CP-Even

CP-Odd

final states

Phys. Rev. Lett. 98 , I2 180 I (2007)

- Untagged B_{s} decays to $\mathrm{J} / \Psi\left(\mu^{+} \mu^{-}\right) \phi\left(\mathrm{K}^{+} \mathrm{K}^{-}\right)$,
- Different angular distributions for the CP eigenstates,
- Separation of even and odd modes with time-dependent angular analysis of final-state particles,
- Clean experimental signal.

Angular variables

- 3 angles to separate polarisation amplitudes

Angular variables
z

Angular variables

Angular variables

- 3 angles to separate polarisation amplitudes

$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \phi:$ Analysis

- Signal extracted from Likelihood fit using 23,343 events, yielding $1,039 \pm 45 \mathrm{~B}_{\mathrm{s}}$ candidates.
- Background parameterisations for: lifetime, invariant mass and angular distributions, with prompt and non-prompt components.
- Prompt component from J/ ψ and tracks from hadronisation
- Non-prompt: J / ψ from B decay, tracks for ϕ meson from hadronisation or multi-body decays of same B meson.
- Extracted from fit:
- Average lifetime,
- Width difference,
- (CP-violating phase),
- Magnitude and relative phases of decay amplitudes.

Results: $\Delta \Gamma_{\mathrm{s}}$

- Under no CP-violation $\left(\phi_{\mathrm{s}}=0\right)$,
- $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi$ yields most precise direct $\Delta \Gamma_{\mathrm{s}}$ measurement:

$$
\begin{gathered}
\Delta \Gamma_{s}=0.12_{-0.10}^{+0.08} \pm 0.02 \mathrm{ps}^{-1} \\
\bar{\tau}_{s}=1.52 \pm 0.08_{-0.03}^{+0.01} \mathrm{ps}
\end{gathered}
$$

- Increased luminosity and enhanced analysis on-way.
- $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{*}{ }^{*} \mathrm{D}_{\mathrm{s}}{ }^{(*)}$ consistent with SM and other measurements.

$$
\frac{\Delta \Gamma_{s}^{C P}}{\Gamma_{s}}=0.079_{-0.035}^{+0.038}(\text { stat })_{-0.030}^{+0.031}(\text { syst })
$$

CP-Violating phase: ϕ_{s}

- Small value predicted in SM:~-0.03 rad.
- For untagged initial state, decays of $B_{s} \rightarrow j / \psi \phi$ gives interference terms between CP -odd and CP-even states
- Relates to the time-dependent width through

$$
\Gamma_{s}(t) \sim\left(\mathrm{e}^{-\Gamma_{L} t}-\mathrm{e}^{-\Gamma_{H} t}\right) \sin \phi_{s}
$$

- Sensitivity to ϕ_{s} with sizeable $\Delta \Gamma_{s}$,
- $D \varnothing$ measurement performed with $B_{s} \rightarrow J / \Psi \phi$;
- Same data as for $\Delta \Gamma_{s}$ analysis, where
- ϕ_{s} is now a free parameter in the fitting procedure.

Results: ϕ_{s}

- First direct constraint on ϕ_{s}

$$
\phi_{s}=-0.79 \pm 0.56_{-0.01}^{+0.14} \quad \Delta \Gamma_{s}=0.17 \pm 0.09 \pm 0.02 \mathrm{ps}^{-1}
$$

4-fold ambiguity on $\operatorname{sign}\left(\phi_{s}, \Delta \Gamma_{\mathrm{s}}\right)$
with flip of strong phase angles

$\Delta[$	$\cos \delta_{,}, \cos \delta_{2}$	Φ_{S}
>0	$>0,<0$	-0.79
<0	$>0,<0$	+2.35
>0	$<0,>0$	+0.79
<0	$<0,>0$	-2.35

Combination of Results

- Additional measurements from $\mathrm{D} \varnothing$ in charge asymmetry in:
- di-muon decays,

$$
A_{S L}^{\mu \mu}=\frac{N\left(b \bar{b} \rightarrow \mu^{+} \mu^{+} X\right)-N\left(b \bar{b} \rightarrow \mu^{-} \mu^{-} X\right)}{N\left(\left(b \bar{b} \rightarrow \mu^{+} \mu^{+} X\right)+N\left(b \bar{b} \rightarrow \mu^{-} \mu^{-} X\right)\right.} .
$$

- Semileptonic decays. $A_{S L}^{\text {unt }}=\frac{N\left(B_{s} \rightarrow D_{s}^{-} \mu^{+} \nu\right)-N\left(B_{s} \rightarrow D_{s}^{+} \mu^{-} \bar{\nu}\right)}{N\left(B_{s} \rightarrow D_{s}^{-} \mu^{+} \nu\right)+N\left(B_{s} \rightarrow D_{s}^{+} \mu^{-} \bar{\nu}\right)} \approx \frac{1}{2} A_{S L}^{s}$
- CP-violation through mixing would produce non-zero charge asymmetry $A_{S L}^{s}$.
- Refer to talk by Pieter Van Den Berg, Monday 30 Jul for further details.
- Combined value from both measurements yields
$A_{S L}^{s}=0.0001 \pm 0.0090$.
- Provides important constraint in order to combine measurements.
$A_{S L}=\frac{\Delta \Gamma}{\Delta m} \tan \phi$

Combination Results

- Possible to extract additional constraint by combining measurements,

$$
\Delta \Gamma_{s} \tan \phi_{s}=A_{S L}^{s} \Delta m_{s}=0.02 \pm 0.16 \mathrm{ps}^{-1}
$$

- Includes external input:
- $\Delta \mathrm{m}_{\mathrm{s}}(\mathrm{CDF})$,
- World-average flavour-specific Bs lifetime (includes D®ீ lifetime measurement).

$$
\tau_{f s}=1.440 \pm 0.036 \mathrm{ps}^{-1} \quad(\mathrm{HFAG})
$$

- Refit $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \phi$ data with new constraint.

- $\phi_{\mathrm{s}} \sim 1.2 \sigma$ from SM expectation,
- 4-fold ambiguity remains.
$\Delta \Gamma_{s}=0.13 \pm 0.09 \mathrm{ps}^{-1}$
$\left|\phi_{s}\right|=0.70_{-0.47}^{+0.39}$
Or $\quad \begin{aligned} \Delta \Gamma_{s} & =-0.13 \pm 0.0 \\ \left|\phi_{s}\right| & =2.44_{-0.39}^{+0.47}\end{aligned}$

Summary

- Exciting results in observable parameters of Bs sector
- $\Delta \mathrm{m}_{\mathrm{s}}$: Have precision measurement (CDF)
- $\Delta \Gamma_{\mathrm{s}}$: Direct measurements
- ϕ_{s} : First direct constraint - sign ambiguity still to be resolved.
- Combined results of $\Delta \Gamma_{s}, \phi_{s}$
- All currently consistent with SM predictions, however
- Results statistically limited.
- With increased luminosity ($4-8 \mathrm{fb}^{-1}$) expected from Tevatron, and improved analyses, will allow us to probe deeper into asymmetry within the Universe.

Backup

$$
\frac{d^{3} \Gamma(t)}{d \cos \theta d \varphi d \cos \psi} \propto 2\left|A_{0}(0)\right|^{2} \mathcal{I}_{+} \cos ^{2} \psi\left(1-\sin ^{2} \theta \cos ^{2} \varphi\right)+\sin ^{2} \psi\left\{\left|A_{\|}(0)\right|^{2} \mathcal{T}_{+}\left(1-\sin ^{2} \theta \sin ^{2} \varphi\right)+\left|A_{\perp}(0)\right|^{2} \mathcal{T}_{-} \sin ^{2} \theta\right\}
$$

$$
+\frac{1}{\sqrt{2}} \sin 2 \psi\left|A_{0}(0)\right|\left|A_{\|}(0)\right| \cos \left(\delta_{2}-\delta_{1}\right) \mathcal{T}_{+} \sin ^{2} \theta \sin 2 \varphi
$$

$$
+\left\{\frac{1}{\sqrt{2}}\left|A_{0}(0)\right|\left|A_{\perp}(0)\right| \cos \delta_{2} \sin 2 \psi \sin 2 \theta \cos \varphi\right.
$$

$$
\begin{equation*}
\left.-\left|A_{\|}(0)\right|\left|A_{\perp}(0)\right| \cos \delta_{1} \sin ^{2} \psi \sin 2 \theta \sin \varphi\right\} \frac{1}{2}\left(e^{-\Gamma_{H} t}-e^{-\Gamma_{L} t}\right) \sin \phi_{s} \tag{2}
\end{equation*}
$$

$$
\mathcal{T}_{+/-}=\frac{1}{2}\left(\left(1 \pm \cos \phi_{s}\right) e^{-\Gamma_{L} t}+\left(1 \mp \cos \phi_{s}\right) e^{-\Gamma_{H} t}\right)
$$

Likelihood fit parameters

Observable	CP conserved	free ϕ_{s}	
$\Delta \Gamma\left(\mathrm{ps}^{-1}\right)$	$0.12_{-0.10}^{+0.08}$	$0.17_{-0.09}^{+0.09}$	
$\frac{1}{\bar{\Gamma}}=\bar{\tau}(\mathrm{ps})$	$1.52_{-0.08}^{+0.08}$	1.49 ± 0.08	
ϕ_{s}	$\equiv 0$	-0.79 ± 0.56	
$\left\|A_{0}(0)\right\|^{2}-\left\|A_{\\| \mid}(0)\right\|^{2}$	0.38 ± 0.05	0.37 ± 0.06	
$A_{\perp}(0)$	0.45 ± 0.05	0.46 ± 0.06	
$\delta_{1}-\delta_{2}$	2.6 ± 0.4	2.6 ± 0.4	
δ_{1}	-	3.3 ± 1.0	
δ_{2}	-	0.7 ± 1.1	

Systematics

Source	$c \tau\left(B_{s}^{0}\right)$ $\mu \mathrm{m}$	$\Delta \Gamma$ ps^{-1}	R_{\perp}	ϕ_{s}
Procedure test	± 2.0	± 0.02	± 0.01	-
Acceptance	± 0.5	± 0.001	± 0.003	± 0.01
Reco. algorithm	$-8.0,+1.3$	+0.001	± 0.01	-0.01
Background model	+1.0	+0.01	-0.01	+0.14
Alignment	± 2.0	-	-	-
Total	$-8.8,+3.3$	± 0.02	± 0.02	$-0.01,+0.14$

Angles

In the coordinate system of the J / ψ rest frame (where the ϕ meson moves in the x direction, the z axis is perpendicular to the decay plane of $\phi \rightarrow K^{+} K^{-}$, and $p_{y}\left(K^{+}\right) \geq 0$), the transversity polar and azimuthal angles (θ, φ) describe the direction of the μ^{+}, and ψ is the angle between $\vec{p}\left(K^{+}\right)$and $-\vec{p}(J / \psi)$ in the ϕ rest frame.

