

Outline

- Bs meson sector;
- ΔMs: Mass difference;
- $\Delta\Gamma$ s: Width difference;
- φs: CP-violating phase angle;
 - A^s_{SL}: Charge asymmetry;
- Combination results;
- Summary

Strange Properties of Beautiful Mesons

$$i\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} B_s^0 \\ \bar{B}_s^0 \end{pmatrix} = \begin{pmatrix} M - \frac{i}{2}\Gamma & M_{12} - \frac{i}{2}\Gamma_{12} \\ M_{12}^* - \frac{i}{2}\Gamma_{12}^* & M - \frac{i}{2}\Gamma \end{pmatrix} \begin{pmatrix} B_s^0 \\ \bar{B}_s^0 \end{pmatrix}$$

• Flavour B_s^0 , \bar{B}_s^0 and mass B_L , B_H eigenstates different

5 observables

$$M_s = \frac{M_H + M_L}{2}$$
$$\Gamma_s \equiv \frac{1}{\bar{\tau}_s} = \frac{\Gamma_L + \Gamma_H}{2}$$

$$\phi_s = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right)$$

 M_{I2} dominated by $b \to t \bar{t} s$

$$M_s = \frac{M_H + M_L}{2}$$
 $\Delta m_s = M_H - M_L \sim 2|M_{12}|$

$$\Gamma_s \equiv \frac{1}{\bar{\tau}_s} = \frac{\Gamma_L + \Gamma_H}{2}$$
 $\Delta \Gamma_s = \Gamma_L - \Gamma_H \sim 2|\Gamma_{12}|\cos\phi_s$

 Γ_{12} dominated by $b \to c \bar c s$

Measuring Beyond SM effects

- M_{12} sensitive to effects of new physics, both through $|M_{12}|$ and $\arg(M_{12})$.
- ullet $|M_{12}|$ measured from $\Delta m_s \sim 2|M_{12}|$
- $\arg(M_{12})$ can be obtained through $\phi_s = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right)$
- Γ_{12} from tree level processes; new physics unlikely, however NP can enter width difference through ϕ_s

$$\Delta\Gamma_s = 2|\Gamma_{12}|\cos\phi_s \approx \Delta\Gamma_{\rm SM}\cos\phi_s$$

 $b o s\gamma$ could change $\Gamma_{ extsf{12}}$

- leads to decrease in $\Delta\Gamma_s$.
- Gluinos and squarks in MSSM box diagrams can compete with SM contributions,

Measuring B_s mesons at DØ

- Tevatron: proton—antiproton collisions at \sqrt{s} =1.96 TeV,
- Most B physics analyses utilise excellent 3-layer muon system with large $|\eta|$ <2 coverage.
- Vertexing and decay-length measurements using silicon and fiber-tracking systems, enclosed within 2T field.
- Over 3fb-1 delivered by accelerator division to DØ since 2002.
- These analyses from ~Ifb-1 integrated luminosity.

Mass Difference Δm_s

• In 2006

DØ Collab. PRL 97 021802 (2006)

- DØ first direct double-sided bound on Δm_s , rules out potential large effects from new physics
- CDF precision measurement.

$$\Delta m_s = 17.77 \pm 0.10 \, (\mathrm{stat}) \pm 0.07 \, (\mathrm{syst})$$
 CDF Collab. PRL 97 242003 (2006)

DØ to update shortly with improved analysis, increased luminosity and additional decay modes.

Width Difference $\Delta\Gamma_s$

Width difference in B_s system predicted in SM as

$$rac{\Delta\Gamma_s}{\Gamma_s}=0.127\pm0.024$$
 (A. Lenz, U. Nierste, hep-ph/0612167).

 Effects from New Physics processes may reduce width difference

CP - even final states $\Delta\Gamma_s$

CP - odd final states $\Delta\Gamma_s \downarrow$

- DØ results from:
 - $B_s \to D_s(*)D_s(*)$,
 - B_s → J/ψ ϕ .

$B_s \rightarrow D_s(*)D_s(*)$

- Width difference $\Delta\Gamma_s = \Delta\Gamma_s^{\rm CP}\cos\phi_s$, where $\Delta\Gamma_s^{\rm CP} \equiv 2|\Gamma_{12}| = \Gamma({\rm even}) \Gamma({\rm odd})$ is the difference between the CP-even and CP-odd final-states.
- Decay of $B_s \to D_s^+ D_s^-$ is pure CP-even
- Under certain theoretical assumptions $D_s^{(*)}D_s^{(*)}$ is mainly CP-even.

 Requires validation by experiment Some uncertainties in theoretical assumptions.
- Under these assumptions, measurement of branching fraction allows determination of the width difference $\Delta\Gamma_s^{\rm CP}$

$$2\operatorname{Br}(B_s^0 \to D_s^{(*)} D_s^{(*)}) = \frac{\Delta \Gamma_s^{\operatorname{CP}}}{\Gamma_s} \left\{ 1 + \mathcal{O}\left(\frac{\Delta \Gamma_s}{\Gamma_s}\right) \right\}$$

• $\Delta\Gamma_s^{\text{CP}}$ is independent to CP-violation, provides a further check on NP.

Event Selection

- Use 2-dimensional unbinned maximum log-likelihood technique to simultaneously fit:
 - m(KK) from $D_s o \phi \mu$,
 - $m(\phi_{|}\pi)$
- Normalised to decay $B_s \rightarrow D_s^{(*)} \mu \nu X$, reduce detector related systematic effects.

 K^+

 K^{-}

Results: $B_s \rightarrow D_s^{(*)}D_s^{(*)}$

$$N(D_s^{(*)}D_s^{(*)}) = 13.4_{-6.0}^{+6.6}$$
 $N(D_s^{(*)}D_s^{(*)}) = 13.4_{-6.0}^{+6.6}$
 $N(D_s^{(*)}D_s^{(*)}D_s^{(*)}) = 13.4_{-6.0}^{+6.6}$
 $N(D_s^{(*)}D_s^{($

- Signal $D_s^{(*)}D_s^{(*)}$: Joint production of $D_s(\Phi_1\pi)$ and Φ_2 mesons,
- Background: uncorrelated production and peaking contributions,
- Increased precision from previous measurement (ALEPH).
- DØ measures

$$Br(B_s^0 \to D_s^{(*)} D_s^{(*)}) = 0.039_{-0.017}^{+0.019} (stat)_{-0.015}^{+0.016} (syst)$$

Allows indirect estimate of $\Delta\Gamma_s$ through:

$$\frac{\Delta\Gamma_s^{CP}}{\Gamma_s} \approx 2\text{Br}(B_s^0 \to D_s^{(*)}D_s^{(*)})$$

$$\frac{\Delta\Gamma_s^{CP}}{\Gamma_s} = 0.079_{-0.035}^{+0.038}(\text{stat})_{-0.030}^{+0.031}(\text{syst})$$

• Consistent with SM.
$$\frac{\Delta\Gamma_s}{\Gamma_s} = 0.127 \pm 0.024$$

$B_s \rightarrow J/\psi \phi$

$$\sum_{\bar{B}_s^0} J/\psi(\mu^+\mu^-)\phi(K^+K^-)$$

CP-Even CP-Odd

final states

Phys. Rev. Lett. 98, 121801 (2007)

- Untagged B_s decays to $J/\psi(\mu^+\mu^-)$ $\varphi(K^+K^-)$,
- Different angular distributions for the CP eigenstates,
- Separation of even and odd modes with time-dependent angular analysis of final-state particles,
- Clean experimental signal.

$B_s \rightarrow J/\psi \ \phi$: Analysis

- Signal extracted from Likelihood fit using 23,343 events, yielding 1,039 \pm 45 B_s candidates.
- Background parameterisations for: lifetime, invariant mass and angular distributions, with prompt and non-prompt components.
 - Prompt component from J/ψ and tracks from hadronisation
 - Non-prompt: J/Ψ from B decay, tracks for Φ meson from hadronisation or multi-body decays of same B meson.
- Extracted from fit:
 - Average lifetime,
 - **–** Width difference,
 - (CP-violating phase),
 - Magnitude and relative phases of decay amplitudes.

Results: $\Delta\Gamma_s$

- Under no CP-violation ($\phi_s=0$),
- $B_s \rightarrow J/\psi \ \phi$ yields most precise direct $\Delta \Gamma_s$ measurement:

$$\Delta\Gamma_s = 0.12^{+0.08}_{-0.10} \pm 0.02 \,\mathrm{ps}^{-1}$$

$$\bar{\tau}_s = 1.52 \pm 0.08^{+0.01}_{-0.03} \,\mathrm{ps}$$

 Increased luminosity and enhanced analysis on-way.

• $B_s \rightarrow D_s^{(*)}D_s^{(*)}$ consistent with SM and other measurements.

$$\frac{\Delta\Gamma_s^{CP}}{\Gamma_s} = 0.079_{-0.035}^{+0.038} (\text{stat})_{-0.030}^{+0.031} (\text{syst})$$

CP-Violating phase: φ_s

- Small value predicted in SM: ~-0.03 rad.
- For untagged initial state, decays of $B_s \rightarrow J/\psi$ φ gives interference terms between CP-odd and CP-even states
- Relates to the time-dependent width through $\Gamma_s(t) \sim (\mathrm{e}^{-\Gamma_L t} \mathrm{e}^{-\Gamma_H t}) \sin \phi_s$
- Sensitivity to ϕ_s with sizeable $\Delta\Gamma_s$,
- DØ measurement performed with $B_s \rightarrow J/\psi \phi$;
 - Same data as for $\Delta\Gamma_s$ analysis, where
 - ϕ_s is now a free parameter in the fitting procedure.

Results: φ_s

• First direct constraint on ϕ_s

$$\phi_s = -0.79 \pm 0.56^{+0.14}_{-0.01}$$

$$\Delta\Gamma_s = 0.17 \pm 0.09 \pm 0.02 \,\mathrm{ps}^{-1}$$

4-fold ambiguity on $sign(\phi_s, \Delta\Gamma_s)$ with flip of strong phase angles

ΔΓ	$\cos\delta_1,\cos\delta_2$	фѕ
>0	>0,<0	-0.79
<0	>0,<0	+2.35
>0	<0,>0	+0.79
<0	<0,>0	-2.35

Combination of Results

- Additional measurements from DØ in charge asymmetry in:
 - di-muon decays, $A^{\mu\mu}_{SL} = \frac{N(bb \to \mu^+ \mu^+ X) N(bb \to \mu^- \mu^- X)}{N(b\bar{b} \to \mu^+ \mu^+ X) + N(b\bar{b} \to \mu^- \mu^- X)}.$
 - Semileptonic decays. $A_{SL}^{\mathrm{unt}} = rac{N(B_s o D_s^- \mu^+
 u) N(B_s o D_s^+ \mu^- ar{
 u})}{N(B_s o D_s^- \mu^+
 u) + N(B_s o D_s^+ \mu^- ar{
 u})} pprox rac{1}{2} A_{SL}^s$
- CP-violation through mixing would produce non-zero charge asymmetry A_{SL}^s .
- Refer to talk by Pieter Van Den Berg, Monday 30 Jul for further details.
- Combined value from both measurements yields $A_{SL}^s = 0.0001 \pm 0.0090$.
- Provides important constraint in order to combine measurements.

$$A_{SL} = \frac{\Delta\Gamma}{\Delta m} \tan \phi$$

Combination Results

• Possible to extract additional constraint by combining measurements, ${}^{\circ}$

$$\Delta\Gamma_s \tan \phi_s = A_{SL}^s \Delta m_s = 0.02 \pm 0.16 \,\mathrm{ps}^{-1}$$

- Includes external input:
 - Δm_s (CDF),
 - World-average flavour-specific Bs lifetime (includes DØ lifetime measurement). $\tau_{fs} = 1.440 \pm 0.036\,\mathrm{ps^{-1}} \ \ (\mathrm{HFAG})$
- Refit $B_s \rightarrow J/\psi \varphi$ data with new constraint.
- $\phi_s \sim 1.2\sigma$ from SM expectation,
- 4-fold ambiguity remains.

hep-ex/0702030, PRD

$$\Delta\Gamma_s = 0.13 \pm 0.09 \,\mathrm{ps}^{-1}$$
 $|\phi_s| = 0.70^{+0.39}_{-0.47}$
Or
$$\Delta\Gamma_s = -0.13 \pm 0.09 \,\mathrm{ps}^{-1}$$
 $|\phi_s| = 2.44^{+0.47}_{-0.39}$

Summary

- Exciting results in observable parameters of Bs sector
- Δm_s: Have precision measurement (CDF) CDF Collab. PRL 97 242003 (2006)
- $\Delta\Gamma_s$: Direct measurements Phys. Rev. Lett. 98, 121801 (2007)
- ϕ_s : First direct constraint sign ambiguity still to be resolved.
- Combined results of $\Delta\Gamma_s$, Φ_s hep-ex/0702030, PRD
- All currently consistent with SM predictions, however
- Results statistically limited.
- With increased luminosity (4-8 fb⁻¹) expected from Tevatron, and improved analyses, will allow us to probe deeper into asymmetry within the Universe.

Backup

$$\frac{d^{3}\Gamma(t)}{d\cos\theta\ d\varphi\ d\cos\psi} \propto\ 2|A_{0}(0)|^{2}\ \mathcal{T}_{+}\ \cos^{2}\psi(1-\sin^{2}\theta\cos^{2}\varphi) + \sin^{2}\psi\{|A_{\parallel}(0)|^{2}\ \mathcal{T}_{+}\ (1-\sin^{2}\theta\sin^{2}\varphi) + |A_{\perp}(0)|^{2}\ \mathcal{T}_{-}\ \sin^{2}\theta\}$$

$$+\frac{1}{\sqrt{2}}\sin 2\psi |A_0(0)||A_{\parallel}(0)|\cos(\delta_2-\delta_1) \mathcal{T}_+ \sin^2\theta\sin 2\varphi$$

$$+ \left\{ \frac{1}{\sqrt{2}} |A_0(0)| |A_{\perp}(0)| \cos \delta_2 \sin 2\psi \sin 2\theta \cos \varphi \right\}$$

$$-|A_{\parallel}(0)||A_{\perp}(0)|\cos\delta_{1}\sin^{2}\psi\sin2\theta\sin\varphi\bigg\}\frac{1}{2}\left(e^{-\Gamma_{H}t}-e^{-\Gamma_{L}t}\right)\sin\phi_{s}.$$
 (2)

$$\mathcal{T}_{+/-} = \frac{1}{2} \left((1 \pm \cos \phi_s) e^{-\Gamma_L t} + (1 \mp \cos \phi_s) e^{-\Gamma_H t} \right)$$

Likelihood fit parameters

	•	
Observable	CP conserved	free ϕ_s
$\Delta\Gamma (\mathrm{ps}^{-1})$	$0.12^{+0.08}_{-0.10}$	$0.17^{+0.09}_{-0.09}$
$\frac{1}{\overline{\Gamma}} = \overline{\tau} \text{ (ps)}$	$1.52^{+0.08}_{-0.08}$	1.49 ± 0.08
$\dot{\phi}_s$	$\equiv 0$	-0.79 ± 0.56
$ A_0(0) ^2 - A_{\parallel}(0) ^2$	0.38 ± 0.05	0.37 ± 0.06
$A_{\perp}(0)$	$0.45 {\pm} 0.05$	0.46 ± 0.06
$\delta_1 - \delta_2$	$2.6 {\pm} 0.4$	$2.6 {\pm} 0.4$
δ_1	_	3.3 ± 1.0
δ_2	_	$0.7{\pm}1.1$

Systematics

Source	$c\tau(B_s^0)$	$\Delta\Gamma$	R_{\perp}	ϕ_s
	$ m \mu m$	ps^{-1}		
Procedure test	±2.0	± 0.02	± 0.01	_
Acceptance	± 0.5	± 0.001	± 0.003	± 0.01
Reco. algorithm	-8.0, +1.3	+0.001	± 0.01	-0.01
Background model	+1.0	+0.01	-0.01	+0.14
Alignment	± 2.0	_	_	_
Total	-8.8, +3.3	± 0.02	± 0.02	-0.01, +0.14

Angles

In the coordinate system of the J/ψ rest frame (where the ϕ meson moves in the x direction, the z axis is perpendicular to the decay plane of $\phi \to K^+K^-$, and $p_y(K^+) \ge 0$), the transversity polar and azimuthal angles (θ, φ) describe the direction of the μ^+ , and ψ is the angle between $\vec{p}(K^+)$ and $-\vec{p}(J/\psi)$ in the ϕ rest frame.