Imperial College London

Search for Supersymmetric Neutral Higgs Bosons at the Tevatron

Tim Scanlon

On behalf of the CDF and DØ Collaborations

Outline

- Introduction
 - Tevatron & experiments
- Neutral SUSY Higgs Searches
 - Minimal Supersymmetric SM
 - Fermiophobic Higgs
- Prospects & Conclusions

[Thanks to all my Tevatron colleagues]

Tevatron Performance

19 April 2002 - 17 June 2007

Tevatron continues to perform well

- Over 3fb⁻¹ delivered to each experiment
- Peak luminosities of ~3 x10³²

Total Luminosity 8.2 fb-1 4.1 fb-1 101/03 9/30/04 9/30/05 9/30/07 9/29/08 9/29/09

Run II Integrated Luminosity

 Performance matching design integrated luminosity of ~7-8fb⁻¹ by 2009

CDF and DØ experiments

- Both detectors extensively upgraded for Run IIa
 - New silicon vertex detector
 - New tracking system
 - Upgraded μ chambers

CDF: New plug calorimeter & ToF

- DØ
 - New solenoid & preshowers
 - Run IIb: New inner layer in SMT& L1 trigger

Neutral SUSY Higgs

- Introduction
- Minimal Supersymmetric Standard Model (MSSM)
 - Introduction
 - Analysis Tools
 - Neutral Higgs bosons (φ) searches

$$\varphi \ \to \tau\tau$$

$$b\phi \rightarrow b\tau\tau$$

$$b\phi \rightarrow bbb$$

- Fermiophobic Higgs
- Prospects & Conclusions

Higgs bosons in the MSSM

MSSM has 2 Higgs doublets

- H_u (H_d) couple to up- (down-) type fermions
- After EWSB 5 Higgs particles: h, H, A, H⁺, H⁻
 - h has to be light: $m_h < \sim 140 \text{ GeV}$
- At tree level, 2 independent parameters: m_{Δ} and $tan\beta$
 - $tan\beta$: Ratio of VEV's = $< H_u > / < H_d >$

At large tan β:

- Coupling of A, h/H to down-type fermions, e.g. b-quark, enhanced wrt SM
 - \rightarrow production amplitude $\sim \tan\beta \rightarrow$ production cross section $\sim \tan^2\beta$
- h/H & A (denoted by ϕ) ~degenerate in mass \longrightarrow further increase in cross-section

For low & intermediate masses

- Br ($\phi \rightarrow bb$) ~90%, Br ($\phi \rightarrow \tau\tau$) ~10%

MSSM Higgs boson production

Signatures

- Higgs decays to 2τ 's
- Further decays of τ's define final states

- Higgs decays to 2 high p_T b-jets/2 τ's
- 1 or 2 associated bquarks
- Good b-jet and τ identification vital

Similar overall sensitivities → Combine

b-jet Identification

- MSSM Higgs \rightarrow bb ~90% of time
 - Improves S/B by > 10
- Use lifetime information
 - Correct for MC/data differences
 - Measured at given operating points

CDF: Secondary vertex reconstruction

- Neural Net improves purity
- Inputs: track multiplicity, p_T, vertex decay length, mass, fit
- Loose = 50% eff, 1.5 % mis-tag
- Tight = 40% eff, 0.5 % mis-tag

DØ: Neural Net tagger

- Secondary vertex & dca based inputs, derived from basic b-tagging tools
- High efficiency, purity
- Loose = 70% eff, 4.5% mis-tag
- Tight = 50% eff, 0.5% mis-tag

τ_{had}-Identification

CDF: Isolation based

- Require 1 or 3 tracks, p_T > 1 GeV in the isolation cone
 - For 3 tracks total charge must be ±1
 - $p_T^{had} > 15$ (20) GeV for 1 (3) prongs
 - m^{had} < 1.8 (2.2) GeV
- Reject electrons via E/p cut
- Validated via W/Z measurements
- Performance
 - Efficiency ~ 40-50%
 - Jet to τ fake rate ~0.001-0.005

- DØ: 3 NN's for each τ type
 - Validated via Z's

Neutral MSSM Higgs → τ_Iτ_{had/I}

• Main bkgs.: $Z \rightarrow \tau\tau$ (irreducible), multi-jet, W+jets, $Z \rightarrow \mu\mu$, ee, di-boson

• DØ (μ channel only):

- Only 1 isolated μ separated from hadronic τ with opposite sign
- m_W < 20 GeV removes most of remaining W+jets bkg.
- Optimized NNs to separate signal from bkg.

- CDF (μ, e, e+μ channels)
 - Isolated e or μ separated from hadronic τ with opposite sign
 - Multi-jet background suppression: $|p_t^l| + |p_t^{had}| + |\mathcal{E}_T| > 55$ GeV
 - Cut on relative directions of the visible τ decay products and missing $E_{\mathcal{T}}$ removes W+jets bkg.

Neutral MSSM Higgs → τ_Iτ_{had}

- CDF: Cross-section limits derived from m_{v/s} distribution
 - Observed limits weaker than expected due to an excess in data sample, but significance $\leq 2\sigma$ once all search channels & windows considered

• DØ: Cross-section limits - derived from NNs for the different τ types

Neutral MSSM Higgs → τ_Iτ_{had}

- Proceed to set limits
- $\sigma \times Br (\phi \rightarrow \tau\tau)$

Neutral MSSM Higgs → τ_Iτ_{had}

MSSM parameter space

- Use no-mixing & m_h^{max} benchmark scenarios
- 90 < m_A < 200 GeV,
- $tan\beta > 40 60$ excluded

Neutral MSSM Higgs $\rightarrow \tau_I \tau_{had} + b$

- DØ: ICHEP 2006 (344 pb⁻¹)
- Main bkgs.: Z+(b) jets $\to \tau\tau/\mu\mu+(b)$ jets, multi-jet, $tt \to bb\tau\mu$, W+jets, WW
- μ channel only:
 - 1 isolated μ separated from the hadronic τ with opposite sign
 - τ identification: NN cuts optimised for analysis
 - 1 IP b-tagged jet
 - Optimized kinematic NN to separate signal from tt bkg.

- No excess: Set Limits
 - Limits set using m_{vis}
 - Competitive with bbb channel even with 1:9 branching ratio

Neutral MSSM Higgs → bτ_Iτ_{had}

- Limits in MSSM parameter space
 - Use no-mixing & m_h^{max} benchmark scenarios

Neutral MSSM Higgs → bb + b[b]

- DØ: ICHEP '06
- \geq 3 b-tagged jets: ρ_{\nearrow} 40, 25, 15 GeV
 - Invariant mass of 2 leading jets peaks at Higgs mass
- Backgrounds from data
 - Shape estimated from double-tagged di-jet mass spectrum
 - Rate normalized outside signal window
- Agreement between data & predicted background → set upper limits
- Preliminary analysis being optimized
 - New version this summer

Fermiophobic Higgs

- Introduction
- Minimal Supersymmetric Standard Model (MSSM)
 - Introduction
 - *b*-jet Identification
 - τ Identification

$$\phi \rightarrow \tau \tau$$

$$\phi \rightarrow b\tau\tau$$

$$b\phi \rightarrow bbb$$

- Fermiophobic Higgs
- Prospects & Conclusions

Fermiophobic Higgs $\rightarrow 3\gamma + X$

- Some extensions of SM: coupling of Higgs to fermions suppressed
 - Searches previously carried out at LEP and Tevatron
- Search channel (2 Higgs Doublet Model):

$$p\overline{p} \to h_f H^{\pm} \to h_f h_f W^{\pm} \to \gamma \gamma \gamma (\gamma) + X$$

- Backgrounds
 - Direct 3γ production (DTP)
 - Jets or electrons misidentified as γ
 - Estimated from data
- Cuts
 - 3γ with $|\eta| < 1.1$, $E_T^{1,2,3} > 30$, 20, 15 GeV
 - $H_T(3\gamma) > 25GeV$
 - Rejects 3-particle events

0 events seen for 1.1 expected

Fermiophobic Higgs $\rightarrow 3\gamma + X$

- No excess, set limits:
 - 95% CL limit: $\sigma(hH^{\pm})$ < 25.3fb
- Exclusion on mass of h_f for different charged Higgs masses (m_{H^\pm}) & $an \beta$

Prospects and Conclusions

- Introduction
- Neutral SUSY Higgs
- Prospects and Conclusions

Prospects - MSSM Higgs

- 1st results from 1fb-1 show promising sensitivity
 - 2.5 fb⁻¹ data available
 - Many algorithmic/analysis improvements
- Short term (this summer)
 - New b $\phi \rightarrow$ bb + b(b)
 - From both experiments
 - New MSSM combination
 - $b\phi \rightarrow bb + b(b)$ & $\phi \rightarrow \tau\tau$ & $b\phi \rightarrow b\tau\tau$
- Longer term
 - Up to m_A ~250 GeV for large tan β
 - Down to $tan\beta \sim 20$ for low m_A
 - Or discovery

1st combination - low statistics

Conclusions

- Tevatron and CDF/ DØ experiments performing very well
- Wide range of SUSY Higgs searches performed by CDF & DØ with up to 1 fb⁻¹ Run II data:
 - No signal observed in MSSM Higgs search, but already powerful!
- Updated CDF and DØ combinations soon
 - Rapid evolution in sensitivity
 - Over 2.5 times more data under analysis

Very exciting times ahead!

Backup slides

Tevatron & DØ

DØ B-tagging

Several mature algorithms used:

- 3 main categories:
 - Soft-lepton tagging
 - Impact Parameter based
 - Secondary Vertex reconstruction

Combine in Neural Network:

- vertex mass
- vertex number of tracks
- vertex decay length significance
- chi2/DOF of vertex
- number of vertices
- two methods of combined track impact parameter significances

B-tagging - (DØ) Certification

- Have MC / data differences particularly at a hadron machine
 - Measure performance on data
 - Tag Rate Function (TRF)
 Parameterized efficiency & fake-rate as function of p_T and η
 - Use to correct MC b-tagging rate

- b and c-efficiencies
 - Measured using a b-enriched data sample
- Fake-rate
 - Measured using QCD data

MSSM benchmarks

- Five additional parameters due to radiative correction
 - M_{SUSY} (parameterizes squark, gaugino masses)
 - X_t (related to the trilinear coupling $A_t \rightarrow stop$ mixing)
 - M₂ (gaugino mass term)
 - μ (Higgs mass parameter)
 - M_{gluino} (comes in via loops)

Two common benchmarks

- Max-mixing Higgs boson mass m_h close to max possible value for a given $tan\beta$
- No-mixing vanishing mixing in stop sector → small mass for h

	m _h -max	no-mixing
M _{SUSY}	1 TeV	2 TeV
X,	2 TeV	0
M ₂	200 GeV	200 GeV
μ	±200 GeV	±200 GeV
mg	800 GeV	1600 GeV

CDF - MSSM Higgs $\rightarrow \tau_I \tau_{had}$

No excess seen in this channel

MSSM evolution

