Local SU(5) Unification from the Heterotic String

Christoph Lüdeling
 ITP, Universität Heidelberg

W. Buchmüller, CL, J. Schmidt, arXiv:0707.1651
(1) Introduction
(2) The Model
(3) Anomaly Cancellation
(4) Local GUT
(5) Outlook

Introduction

- GUT: Attractive features:
- $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \subset \mathrm{SU}(5), \mathrm{SO}_{10} \ldots$, gauge couplings unify
- Unification matter into larger multiplets
- Large Higgs representations required
- Doublet-triplet-splitting
- Yukawa couplings do not unify
- Drawbacks can be addressed in higher-dimensional orbifold GUTs - Nice nocsihility. Heterotic Strins.
- $E_{8} \times E_{8}$ gauge symmetry included
- Simple orbifold compactifications with realistic four-dimensional matter content and gauge group possible
- UV completion

Introduction

- GUT: Attractive features:
- $\operatorname{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \subset \mathrm{SU}(5), \mathrm{SO}_{10} \ldots$, gauge couplings unify
- Unification matter into larger multiplets
- Drawbacks in 4d GUTS
- Large Higgs representations required
- Doublet-triplet-splitting
- Yukawa couplings do not unify
- Drawbacks can be addressed in higher-dimensional orbifold GUTs - Nice possibility: Heterotic String:
- $\mathrm{F}_{8} \times \mathrm{F}_{8}$ gauge symmetry includer
- Simple orbifold compactifications with realistic four-dimensional matter content and gauge group possible
- UV completion

Introduction

- GUT: Attractive features:
- $\operatorname{SU}(3) \times S U(2) \times U(1) \subset S U(5), \mathrm{SO}_{10} \ldots$, gauge couplings unify
- Unification matter into larger multiplets
- Drawbacks in 4d GUTS
- Large Higgs representations required
- Doublet-triplet-splitting
- Yukawa couplings do not unify
- Drawbacks can be addressed in higher-dimensional orbifold GUTs
- $E_{8} \times E_{8}$ gauge symmetry included
- Simple orbifold compactifications with realistic four-dimensional matter
content and gauge group possible
- UV completion

Introduction

- GUT: Attractive features:
- $\operatorname{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \subset \mathrm{SU}(5), \mathrm{SO}_{10} \ldots$, gauge couplings unify
- Unification matter into larger multiplets
- Drawbacks in 4d GUTS
- Large Higgs representations required
- Doublet-triplet-splitting
- Yukawa couplings do not unify
- Drawbacks can be addressed in higher-dimensional orbifold GUTs
- Nice possibility: Heterotic String:
- $E_{8} \times E_{8}$ gauge symmetry included
- Simple orbifold compactifications with realistic four-dimensional matter content and gauge group possible
- UV completion

Introduction

- GUT: Attractive features:
- $\operatorname{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \subset \mathrm{SU}(5), \mathrm{SO}_{10} \ldots$, gauge couplings unify
- Unification matter into larger multiplets
- Drawbacks in 4d GUTS
- Large Higgs representations required
- Doublet-triplet-splitting
- Yukawa couplings do not unify
- Drawbacks can be addressed in higher-dimensional orbifold GUTs
- Nice possibility: Heterotic String:
- $E_{8} \times E_{8}$ gauge symmetry included
- Simple orbifold compactifications with realistic four-dimensional matter content and gauge group possible
- UV completion
[Kobayashi, Raby, Zhang; Buchmüller, Hamaguchi, Lebedev, Ratz; Kim, Kim, Kyae; Förste, Nilles, Vaudrevange, Wingerter, Ramos-Sanchez,...]

Heterotic Orbifold Compactification

- Choose a torus with discrete isometry ("twist") with fixed points
- Mod out by this isometry, fixed points become singularities
- Fixing boundary conditions at fixed points requires embedding the twist into gauge group and choosing Wilson lines
- Gauge symmetry reduced at fixed points (but rank usually preserved)
- Twisted sectors: States localised at fixed points

Heterotic Orbifold Compactification

- Choose a torus with discrete isometry ("twist") with fixed points
- Mod out by this isometry, fixed points become singularities
- Fixing boundary conditions at fixed points requires embedding the twist into gauge group and choosing Wilson lines
- Gauge symmetry maduced at fixed noints (but rank usually preserved)
- Twisted sectors: States localised at fixed points

Heterotic Orbifold Compactification

- Choose a torus with discrete isometry ("twist") with fixed points
- Mod out by this isometry, fixed points become singularities
- Fixing boundary conditions at fixed points requires embedding the twist into gauge group and choosing Wilson lines
- Gauge symmetry reduced at fixed points (but rank usually preserved)

Heterotic Orbifold Compactification

- Choose a torus with discrete isometry ("twist") with fixed points
- Mod out by this isometry, fixed points become singularities
- Fixing boundary conditions at fixed points requires embedding the twist into gauge group and choosing Wilson lines
- Gauge symmetry reduced at fixed points (but rank usually preserved)
- Twisted sectors: States localised at fixed points

The Model: Geometry

[Buchmüller, Hamaguchi, Lebedev, Ratz]

- Torus: $\mathrm{G}_{2} \times \mathrm{SU}(3) \times \mathrm{SO}(4)$ root lattice, $\mathbb{Z}_{6-I I}=\mathbb{Z}_{3} \times \mathbb{Z}_{2}$ twist:
[Kobayashi,Raby,Zhang]

- Obtain effective 6D Theory on T^{2} / \mathbb{Z}_{2} orbifold
- Internal zero modes and twisted states show up as bulk states, twisted states are localised at orbifold fixed points

The Model: Geometry

[Buchmüller, Hamaguchi, Lebedev, Ratz]

- Torus: $\mathrm{G}_{2} \times \mathrm{SU}(3) \times \mathrm{SO}(4)$ root lattice, $\mathbb{Z}_{6-I I}=\mathbb{Z}_{3} \times \mathbb{Z}_{2}$ twist:
[Kobayashi,Raby,Zhang]

String Scale

- Obtain effective 6D Theory on T^{2} / \mathbb{Z}_{2} orbifold
- Internal zero modes and twisted states show up as bulk states,
twisted states are localised at orbifold fixed points

The Model: Geometry

[Buchmüller, Hamaguchi, Lebedev, Ratz]

- Torus: $\mathrm{G}_{2} \times \mathrm{SU}(3) \times \mathrm{SO}(4)$ root lattice, $\mathbb{Z}_{6-/ I}=\mathbb{Z}_{3} \times \mathbb{Z}_{2}$ twist:
[Kobayashi,Raby,Zhang]

- Obtain effective 6D Theory on T^{2} / \mathbb{Z}_{2} orbifold
- Internal zero modes and \mathbb{Z}_{3} twisted states show up as bulk states, \mathbb{Z}_{2} twisted states are localised at orbifold fixed points

The Model: Effective T^{2} / \mathbb{Z}_{2} Orbifold

The Model: Effective T^{2} / \mathbb{Z}_{2} Orbifold

The Model: Effective T^{2} / \mathbb{Z}_{2} Orbifold

The Model: Effective T^{2} / \mathbb{Z}_{2} Orbifold

The Model: Effective T^{2} / \mathbb{Z}_{2} Orbifold

Anomalies

- Orbifold have bulk and brane anomalies
- Anomaly cancellation by Green-Schwarz mechanism requires factorisation of anomaly polynomials, $I_{8}=X_{4} Y_{4}$ and $I_{6}^{f}=X_{4}^{f} Y_{2}$
- $\mathcal{O}(500)$ conditions but guaranteed by string theorv (and modular invariance conditions on twist vectors and Wilson lines): Check of spectrum
- Anomalous U(1)'s induce localised FI terms

- These lead to localisation of bulk fields, break the $U(1)$ and need to be cancelled to obtain SUSY vacuum

Anomalies

- Orbifold have bulk and brane anomalies
- Anomaly cancellation by Green-Schwarz mechanism requires factorisation of anomaly polynomials, $I_{8}=X_{4} Y_{4}$ and $I_{6}^{f}=X_{4}^{f} Y_{2}$
invariance conditions on twist vectors and Wilson lines): Check of spectrum
- Anomalous $\mathrm{U}(1)$'s induce localised FI terms

Anomalies

- Orbifold have bulk and brane anomalies
- Anomaly cancellation by Green-Schwarz mechanism requires factorisation of anomaly polynomials, $I_{8}=X_{4} Y_{4}$ and $I_{6}^{f}=X_{4}^{f} Y_{2}$
- $\mathcal{O}(500)$ conditions, but guaranteed by string theory (and modular invariance conditions on twist vectors and Wilson lines): Check of spectrum

Anomalies

- Orbifold have bulk and brane anomalies
- Anomaly cancellation by Green-Schwarz mechanism requires factorisation of anomaly polynomials, $I_{8}=X_{4} Y_{4}$ and $I_{6}^{f}=X_{4}^{f} Y_{2}$
- $\mathcal{O}(500)$ conditions, but guaranteed by string theory (and modular invariance conditions on twist vectors and Wilson lines): Check of spectrum
- Anomalous $\mathrm{U}(1)$'s induce localised FI terms

$$
\begin{aligned}
& \xi_{0}=148\left(\frac{g M_{P}^{2}}{384 \pi^{2}}\right) \delta^{(2)}\left(z-z_{0}\right) \\
& \xi_{1}=80\left(\frac{g M_{P}^{2}}{384 \pi^{2}}\right) \delta^{(2)}\left(z-z_{1}\right)
\end{aligned}
$$

Anomalies

- Orbifold have bulk and brane anomalies
- Anomaly cancellation by Green-Schwarz mechanism requires factorisation of anomaly polynomials, $I_{8}=X_{4} Y_{4}$ and $I_{6}^{f}=X_{4}^{f} Y_{2}$
- $\mathcal{O}(500)$ conditions, but guaranteed by string theory (and modular invariance conditions on twist vectors and Wilson lines): Check of spectrum
- Anomalous U(1)'s induce localised FI terms

$$
\begin{aligned}
& \xi_{0}=148\left(\frac{g M_{P}^{2}}{384 \pi^{2}}\right) \delta^{(2)}\left(z-z_{0}\right) \\
& \xi_{1}=80\left(\frac{g M_{P}^{2}}{384 \pi^{2}}\right) \delta^{(2)}\left(z-z_{1}\right)
\end{aligned}
$$

- These lead to localisation of bulk fields, break the $\mathrm{U}(1)$ and need to be cancelled to obtain SUSY vacuum

Local SU(5) GUT

- Local GUT: At fixed points, boundary conditions break bulk gauge group to smaller groups,

$$
\text { in our case: } \quad \mathrm{SU}(6) \longrightarrow\left\{\begin{array}{c}
\mathrm{SU}(5) \\
\mathrm{SU}(2) \times \mathrm{SU}(4)
\end{array}\right.
$$

- Localised fields come in complete multiplets of local GUT group
- Due to other branes, bulk fields form split multiplets
- Due to higher symmetry, decoupling of exotics much more transparent that in four-dimensional limit

Local SU(5) GUT

- Local GUT: At fixed points, boundary conditions break bulk gauge group to smaller groups,

$$
\text { in our case: } \quad \mathrm{SU}(6) \longrightarrow\left\{\begin{array}{c}
\mathrm{SU}(5) \\
\mathrm{SU}(2) \times \mathrm{SU}(4)
\end{array}\right.
$$

- In zero mode spectrum, only the intersection of local groups survives, which is $\mathrm{GSM}_{\mathrm{SM}}=\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$
- Due to other branes, bulk fields form split multiplets
- Dueto higher symmetry decounling of avotics much more transparent that in four-cimensional limit

Local SU(5) GUT

- Local GUT: At fixed points, boundary conditions break bulk gauge group to smaller groups,

$$
\text { in our case: } \quad \mathrm{SU}(6) \longrightarrow\left\{\begin{array}{c}
\mathrm{SU}(5) \\
\mathrm{SU}(2) \times \mathrm{SU}(4)
\end{array}\right.
$$

- In zero mode spectrum, only the intersection of local groups survives, which is $\mathrm{G}_{\mathrm{SM}}=\mathrm{SU}(3) \times \operatorname{SU}(2) \times \mathrm{U}(1)$
- Localised fields come in complete multiplets of local GUT group
- Due to other branes, bulk fields form split multiplets

Local SU(5) GUT

- Local GUT: At fixed points, boundary conditions break bulk gauge group to smaller groups,

$$
\text { in our case: } \quad \mathrm{SU}(6) \longrightarrow\left\{\begin{array}{c}
\mathrm{SU}(5) \\
\mathrm{SU}(2) \times \mathrm{SU}(4)
\end{array}\right.
$$

- In zero mode spectrum, only the intersection of local groups survives, which is $\mathrm{G}_{S M}=\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$
- Localised fields come in complete multiplets of local GUT group
- Due to other branes, bulk fields form split multiplets
- Due to higher symmetry, decoupling of exotics much more transparent that in four-dimensional limit

Projection

- On branes, SUSY is broken to $\mathcal{N}=1$
- Bulk Matter: Hypermultiplets, split as $H=\left(H_{L}, H_{R}\right)$ into chiral multiplet
- Bulk vector multiplets split as $V=(A, \phi)$ into vector and chiral multiplets

Projection

- On branes, SUSY is broken to $\mathcal{N}=1$
- Bulk Matter: Hypermultiplets, split as $H=\left(H_{L}, H_{R}\right)$ into chiral multiplet
- Bulk vector multiplets split as $V=(A, \phi)$ into vector and chiral multiplets
- Only one $\mathcal{N}=1$ multiplet survives projection

Decoupling

- Several pairs of $\mathbf{5}+\overline{\mathbf{5}}$ and most exotics decoupled easily

Bulk:	5	51	$\overline{5}_{0}^{\square}$	$\overline{5}$	$\overline{5}$	$\overline{5}_{2}$	$5{ }_{0}^{c}$	$5{ }_{2}^{c}$
$\mathrm{SU}(3) \times \mathrm{SU}(2)$	$(1,2)$	$(1,2)$	$(3,1)$	(1, 2)	$(1,2)$	$(\overline{3}, 1)$	$(\overline{3}, 1)$	$(1,2)$
$\mathrm{U}(1)_{B-L}$	0	0	$-\frac{2}{3}$	0	0	$-\frac{1}{3}$	$\frac{2}{3}$	-1
MSSM content	H_{u}				H_{d}	d_{3}		13

Decoupling

- Several pairs of $\mathbf{5}+\overline{\mathbf{5}}$ and most exotics decoupled easily
- Remaining 5's and $\overline{\mathbf{5}}$'s:

Bulk:	$\mathbf{5}$	$\mathbf{5}_{1}$	$\overline{5}_{0}^{c}$	$\overline{\mathbf{5}}$	$\overline{\mathbf{5}}_{1}$	$\overline{\mathbf{5}}_{2}$	5_{0}^{c}	$\mathbf{5}_{2}^{c}$
$\mathrm{SU}(3) \times \mathrm{SU}(2)$	$(1, \mathbf{2})$	$(1, \mathbf{2})$	$(\mathbf{3}, 1)$	$(1, \mathbf{2})$	$(1, \mathbf{2})$	$(\overline{\mathbf{3}}, 1)$	$(\overline{\mathbf{3}}, 1)$	$(1, \mathbf{2})$
$\mathrm{U}(1)_{B-L}$	0	0	$-\frac{2}{3}$	0	0	$-\frac{1}{3}$	$\frac{2}{3}$	-1
MSSM content	H_{u}				H_{d}	d_{3}		I_{3}

Decoupling

- Several pairs of $\mathbf{5}+\overline{\mathbf{5}}$ and most exotics decoupled easily
- Remaining 5's and $\overline{\mathbf{5}}$'s:

Bulk:	$\mathbf{5}$	$\mathbf{5}_{1}$	$\overline{5}_{0}^{c}$	$\overline{\mathbf{5}}$	$\overline{\mathbf{5}}_{1}$	$\overline{\mathbf{5}}_{2}$	5_{0}^{c}	$\mathbf{5}_{2}^{c}$
$\mathrm{SU}(3) \times \mathrm{SU}(2)$	$(1, \mathbf{2})$	$(1, \mathbf{2})$	$(\mathbf{3}, 1)$	$(1, \mathbf{2})$	$(1, \mathbf{2})$	$(\overline{\mathbf{3}}, 1)$	$(\overline{\mathbf{3}}, 1)$	$(1, \mathbf{2})$
$\mathrm{U}(1)_{B-L}$	0	0	$-\frac{2}{3}$	0	0	$-\frac{1}{3}$	$\frac{2}{3}$	-1
MSSM content	H_{u}				H_{d}	d_{3}		I_{3}

$$
\begin{gathered}
2 \times(\overline{\mathbf{5}}+\mathbf{1 0}) \text { generations on the branes } \\
2 \times(\overline{\mathbf{5}}+\mathbf{1 0}) \text { generations in the bulk } \\
\mathbf{5}+\overline{\mathbf{5}} \text { Higgses in the bulk }
\end{gathered}
$$

Split Multiplets

- Bulk generations:

$$
\begin{array}{ll}
\overline{\mathbf{5}}_{(3)}=(\overline{\mathbf{3}}, 1)+(1, \mathbf{2}) & \mathbf{1 0}_{(3)}=(\mathbf{3}, \mathbf{2})+(\overline{\mathbf{3}}, 1)+(1,1) \\
\overline{\mathbf{5}}_{(4)}=(\overline{\mathbf{3}}, 1)+(1, \mathbf{2}) & \mathbf{1 0}_{(4)}=(\mathbf{3}, 2)+(\overline{\mathbf{3}}, 1)+(1,1)
\end{array}
$$

Split Multiplets

- Bulk generations:

$$
\begin{aligned}
& \overline{\mathbf{5}}_{(3)}=(\overline{3} 12+(1,2) \\
& \overline{\mathbf{5}}_{(4)}=(\overline{3}, 1)+(1,2)
\end{aligned}
$$

$$
\mathbf{1 0}_{(3)}=(3,2)+(\overline{\mathbf{3}}, 1)+(1,1)
$$

$$
\mathbf{1 0}_{(4)}=(3,2)+(3,1)+(1,2)
$$

Split Multiplets

- Bulk generations:

$$
\begin{array}{ll}
\overline{\mathbf{5}}_{(3)}=(\overline{3}, 2)+(1,2) & \mathbf{1 0}_{(3)}=(3,2)+(\overline{\mathbf{3}}, 1)+(1,1) \\
\overline{\mathbf{5}}_{(4)}=(\overline{\mathbf{3}}, 1)+(1,2) & \mathbf{1 0}_{(4)}=(\mathbf{3}, 2)+(\overline{3}, 1)+(1,1)
\end{array}
$$

One generation remains, avoiding $\operatorname{SU}(5)$ mass relations

Split Multiplets

- Bulk generations:

$$
\begin{array}{ll}
\overline{\mathbf{5}}_{(3)}=(\overline{3} \\
\overline{\mathbf{5}}_{(4)}=(\overline{\mathbf{3}}, 1)+(1,2) & \mathbf{1 0}_{(3)}=(\mathbf{3}, 2)+(\overline{\mathbf{3}}, 1)+(1,1) \\
\mathbf{1 0}_{(4)}=(\mathbf{3}, 2)+(\overline{3}, \mathbf{2})+\left(1, \frac{1}{2}\right)
\end{array}
$$

One generation remains, avoiding $\operatorname{SU}(5)$ mass relations

- Higgses:

$$
\begin{aligned}
& \mathbf{5}_{u}=(\mathbf{3}, 1)+(1, \mathbf{2}) \\
& \overline{\mathbf{5}}_{d}=(\overline{\mathbf{3}}, 1)+(1, \mathbf{2})
\end{aligned}
$$

Split Multiplets

- Bulk generations:

$$
\begin{aligned}
& \overline{5}_{(3)}=\left(\overline{3}{ }^{2}\right)+(1,2) \\
& 10_{(3)}=(3,2)+(\overline{3}, 1)+(1,1) \\
& \overline{\mathbf{5}}_{(4)}=(\overline{3}, 1)+(1,2) \\
& 10_{(4)}=(3,2)+(3,1)+(1,2)
\end{aligned}
$$

One generation remains, avoiding $\operatorname{SU}(5)$ mass relations

- Higgses:

$$
\begin{aligned}
& \mathbf{5}_{u}=(3,1)+(1,2) \\
& \overline{\mathbf{5}}_{d}=(\mathbf{3},+(1,2)
\end{aligned}
$$

Split Multiplets

- Bulk generations:

$$
\begin{aligned}
& \overline{5}_{(3)}=\left(\overline{3}{ }^{2}\right)+(1,2) \\
& 10_{(3)}=(3,2)+(\overline{3}, 1)+(1,1) \\
& \overline{\mathbf{5}}_{(4)}=(\overline{3}, 1)+(1,2) \\
& 10_{(4)}=(3,2)+(3,1)+\left(1, \frac{1}{2}\right)
\end{aligned}
$$

One generation remains, avoiding $\operatorname{SU}(5)$ mass relations

- Higgses:

$$
\begin{aligned}
& \mathbf{5}_{u}=(\mathbf{3}, 1)+(1,2) \\
& \mathbf{5}_{d}=(\mathbf{3} 1)+(1,2)
\end{aligned}
$$

Orbifold projection solves doublet-triplet-splitting

Yukawa Couplings

$$
\begin{gathered}
W=C_{(i j)}^{(u)} \mathbf{5}_{u} \mathbf{1 0}_{(i)} \mathbf{1 0 _ { (j) }}+C_{(i j)}^{(d)} \mathbf{5}_{d} \overline{\mathbf{5}}_{(i)} \mathbf{1 0}_{(j)} \\
C_{(i j)}^{(u)}=\left(\begin{array}{cccc}
a_{1} & 0 & a_{2} & a_{3} \\
0 & a_{1} & a_{2} & a_{3} \\
a_{2} & a_{2} & 0 & g \\
a_{3} & a_{3} & g & a_{4}
\end{array}\right), \quad C_{i j}^{(d)}=\left(\begin{array}{cccc}
0 & 0 & b_{1} & b_{2} \\
0 & 0 & b_{1} & b_{2} \\
b_{3} & b_{3} & b_{4} & 0 \\
b_{5} & b_{5} & b_{6} & b_{5}^{2}
\end{array}\right)
\end{gathered}
$$

Yukawa Couplings

$$
\begin{aligned}
& W=C_{(i j)}^{(u)} \mathbf{5}_{u} \mathbf{1 0}_{(i)} \mathbf{1 0}_{(j)}+C_{(i j)}^{(d)} \mathbf{5}_{d} \overline{\mathbf{5}}_{(i)} \mathbf{1 0}_{(j)} \\
& C_{(i j)}^{(u)}=\left(\begin{array}{cccc}
a_{1} & 0 & a_{2} & a_{3} \\
0 & a_{1} & a_{2} & a_{3} \\
a_{2} & a_{2} & 0 & g \\
a_{3} & a_{3} & g & a_{4}
\end{array}\right), \quad C_{i j}^{(d)}=\left(\begin{array}{cccc}
0 & 0 & b_{1} & b_{2} \\
0 & 0 & b_{1} & b_{2} \\
b_{3} & b_{3} & b_{4} & 0 \\
b_{5} & b_{5} & b_{6} & b_{5}^{2}
\end{array}\right) \\
& a_{1}=\left\langle Y_{0}^{c} \bar{Y}_{0}^{c} S_{1} S_{3}\right\rangle, \quad a_{2}=\left\langle\left(\bar{Y}_{0}^{c} S_{1}\right)^{2} S_{5}\right\rangle, \quad a_{3}=\left\langle Y_{0}^{c} \bar{Y}_{0}^{c} S_{1} S_{3} S_{5}\right\rangle, \\
& a_{4}=\left\langle Y_{0}^{c} \bar{Y}_{0}^{c} S_{1} S_{3}\left(S_{5}\right)^{2}\right\rangle, \\
& b_{1}=\left\langle Y_{0} \bar{Y}_{1}\left(S_{5}\right)^{3}\left(S_{7}\right)^{2}\right\rangle, \quad b_{2}=\left\langle X_{1}^{c} \bar{Y}_{2}^{c} U_{1}^{c} S_{7}\right\rangle, \quad b_{3}=\left\langle X_{1}^{c} \bar{Y}_{1} S_{3}\left(S_{5} S_{7}\right)^{2}\right\rangle, \\
& b_{4}=\left\langle\left(X_{1}^{c}\right)^{2} \bar{Y}_{1} U_{1}^{c} S_{4} S_{7}\right\rangle, \quad b_{5}=\left\langle S_{5}\right\rangle, \quad b_{6}=\left\langle\left(X_{1}^{c}\right)^{2} Y_{1} S_{1} S_{7}\right\rangle
\end{aligned}
$$

Yukawa Couplings

$$
\begin{gathered}
W=C_{(i j)}^{(u)} \mathbf{5}_{u} \mathbf{1 0}_{(i)} \mathbf{1 0}_{(j)}+C_{(i j)}^{(d)} \mathbf{5}_{d} \overline{\mathbf{5}}_{(i)} \mathbf{1 0}_{(j)} \\
C_{(i j)}^{(u)}=\left(\begin{array}{cccc}
a_{1} & 0 & a_{2} & a_{3} \\
0 & a_{1} & a_{2} & a_{3} \\
a_{2} & a_{2} & 0 & g \\
a_{3} & a_{3} & g & a_{4}
\end{array}\right), \quad C_{i j}^{(d)}=\left(\begin{array}{cccc}
0 & 0 & b_{1} & b_{2} \\
0 & 0 & b_{1} & b_{2} \\
b_{3} & b_{3} & b_{4} & 0 \\
b_{5} & b_{5} & b_{6} & b_{5}^{2}
\end{array}\right) \\
W=Y_{i j}^{u} h_{u} u_{i}^{c} q_{j}+Y_{i j}^{d} h_{d} d_{i}^{c} q_{j}+Y_{i j}^{\prime} h_{d} l_{i} e_{j}^{c} \\
Y_{i j}^{u}=\left(\begin{array}{ccc}
a_{1} & 0 & a_{3} \\
0 & a_{1} & a_{3} \\
a_{2} & a_{2} & g
\end{array}\right), \quad Y_{i j}^{d}=\left(\begin{array}{ccc}
0 & 0 & b_{2} \\
0 & 0 & b_{2} \\
b_{5} & b_{5} & b_{7}
\end{array}\right), \quad Y_{i j}^{\prime}=\left(\begin{array}{ccc}
0 & 0 & b_{1} \\
0 & 0 & b_{1} \\
b_{3} & b_{3} & b_{4}
\end{array}\right)
\end{gathered}
$$

Outlook

- Constructed local 6D GUT from the heterotic string
- Doublet-triplet splitting achieved easily, SU(5) mass relations avoided dur to split bulk multiplets
- More symmetry in $6 D \rightsquigarrow$ simple decoupling of unwanted states
- Supersymmetric vacuum: four-dimensional D-term vanishes
- Open Questions:

Outlook

- Constructed local 6D GUT from the heterotic string
- Doublet-triplet splitting achieved easily, SU(5) mass relations avoided dur to split bulk multiplets
- More symmetry in 6D simple decoupling of unwanted states
- Supersymmetric vacuum: four-dimensional D-term vanishes
- Open Questions:

Outlook

- Constructed local 6D GUT from the heterotic string
- Doublet-triplet splitting achieved easily, SU(5) mass relations avoided dur to split bulk multiplets
- More symmetry in 6D \rightsquigarrow simple decoupling of unwanted states
- Supersymmetric vacuum: four-dimensional D-term vanishes

Outlook

- Constructed local 6D GUT from the heterotic string
- Doublet-triplet splitting achieved easily, SU(5) mass relations avoided dur to split bulk multiplets
- More symmetry in 6D \rightsquigarrow simple decoupling of unwanted states
- Supersymmetric vacuum: four-dimensional D-term vanishes
- Open Questions:

Outlook

- Constructed local 6D GUT from the heterotic string
- Doublet-triplet splitting achieved easily, SU(5) mass relations avoided dur to split bulk multiplets
- More symmetry in 6D simple decoupling of unwanted states
- Supersymmetric vacuum: four-dimensional D-term vanishes
- Open Questions:
- Phenomenology needs to be improved (CKM mixing, R-parity)
- Profiles of bulk fields due to localised FI terms
- Rlownum/resolution of sinmularitios, senoralisation to k3 internal space

Outlook

- Constructed local 6D GUT from the heterotic string
- Doublet-triplet splitting achieved easily, SU(5) mass relations avoided dur to split bulk multiplets
- More symmetry in 6D simple decoupling of unwanted states
- Supersymmetric vacuum: four-dimensional D-term vanishes
- Open Questions:
- Phenomenology needs to be improved (CKM mixing, R-parity)
- Stabilisation of moduli, in particular, size of two-dimensional torus
\qquad

Outlook

- Constructed local 6D GUT from the heterotic string
- Doublet-triplet splitting achieved easily, SU(5) mass relations avoided dur to split bulk multiplets
- More symmetry in 6D simple decoupling of unwanted states
- Supersymmetric vacuum: four-dimensional D-term vanishes
- Open Questions:
- Phenomenology needs to be improved (CKM mixing, R-parity)
- Stabilisation of moduli, in particular, size of two-dimensional torus
- Profiles of bulk fields due to localised FI terms

Outlook

- Constructed local 6D GUT from the heterotic string
- Doublet-triplet splitting achieved easily, SU(5) mass relations avoided dur to split bulk multiplets
- More symmetry in 6D simple decoupling of unwanted states
- Supersymmetric vacuum: four-dimensional D-term vanishes
- Open Questions:
- Phenomenology needs to be improved (CKM mixing, R-parity)
- Stabilisation of moduli, in particular, size of two-dimensional torus
- Profiles of bulk fields due to localised FI terms
- Blowup/resolution of singularities, generalisation to K3 internal space

