Reconstructing Sparticle Masses using Hadronic Decays

Are R. Raklev
University of Bergen

In collaboration with Jon Butterworth (UCL) and John Ellis (CERN)

[Based on Butterworth, Ellis, ARR, hep-ph/0702150]

Main Points

- Motivation: all hadronic SUSY decay chains
- Jet algorithms: the k_T -algorithm
- Summary of Monte Carlo simulation
- Conclusions

SUSY at the LHC

- Dominant SUSY cross section expected from squarks & gluinos
- These are likely to decay into gauginos
- Decays of squarks / gluinos give colourcharged decay products \rightarrow high p_T jets
- Further leptonic gaugino decays much studied:

$$\tilde{q}_L \to q \tilde{\chi}_2^0 \to q \tilde{\ell}^{\pm} \ell^{\mp} \to q \ell^{\mp} \ell^{\pm} \tilde{\chi}_1^0$$

SUSY at the LHC

- Dominant SUSY cross section expected from squarks & gluinos
- These are likely to decay into gauginos
- Decays of squarks / gluinos give colourcharged decay products \rightarrow high p_T jets
- But what about decays into bosons?

$$\tilde{\chi}_1^{\pm} \to W \tilde{\chi}_1^0 \quad \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0 \quad \tilde{\chi}_2^0 \to h \tilde{\chi}_1^0$$

CMSSM

[Battaglia et al., hep-ph/0106204]

CMSSM for generic

 $A_0 \quad \tan(\beta) \quad \operatorname{sgn} \mu$

Parameter space heavily constrained by WMAP results on Dark Matter

Some, but limited production of bosons

NUHM

NUHM models relax unification of Higgs masses at the GUT scale

Other parameter values consistent with DM

Different decay channels "typical" for NUHM

[De Roeck et al., hep-ph/0508198]

Benchmarks

NUHM/GDM benchmark points: α , β , γ , δ

[De Roeck et al., hep-ph/0508198]

Relaxing the CMSSM can give large gaugino BR to massive bosons:

Point/BR	$\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 Z$	$\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 h$	$\tilde{\chi}_1^{\pm} \to \tilde{\chi}_1^0 W^{\pm}$
α	98.6	0.0	99.6
eta	7.5	64.5	79.0
γ	0.0	0.0	99.9
δ	5.4	92.0	97.5

Benchmarks

NUHM/GDM benchmark points: α , β , γ , δ

[De Roeck et al., hep-ph/0508198]

Relaxing the CMSSM can give large gaugino BR to massive bosons

Hadronic W/Z/h-decays difficult to reconstruct due to large jet activity

• Search for W/Z/h in jet pairs with correct mass give too large combinatorics

- Search for W/Z/h in jet pairs with correct mass give too large combinatorics
- Important to extract as much information as possible from jets (not only for SUSY...)

- Search for W/Z/h in jet pairs with correct mass give too large combinatorics
- Important to extract as much information as possible from jets (not only for SUSY...)
- We use the k_T jet algorithm. This gives us:
 - By construction: a jet mass
 - Scale y where a jet separates into two sub-jets

The k_T-algorithm

1. For every pair of particles (k,l) calculate

$$d_{kB} = p_{Tk}^{2}$$

$$d_{lB} = p_{Tl}^{2}$$

$$d_{kl} = \min(p_{Tk}^{2}, p_{Tl}^{2})R_{kl}^{2}/R^{2}$$

- 2. If d_{kB} or d_{lB} is smaller, the particle is labeled as a jet and removed
- 3. If d_{kl} is smaller, particles k and l are merged
- 4. Continue until all particles have been removed

- Search for W/Z/h in jet pairs with correct mass give too large combinatorics
- We look for the collimated jets from the decay of a boosted heavy boson
- For jets from such a boson with mass M the expectation for yp_T^2 is $O(M^2)$
- For QCD jets initiated by single quark or gluon we expect y<<1

What About Speed?

Traditional k_T computing time scales as N³

FastJet shown to scale as N×ln N

[Cacciari, Salam, hep-ph/0512210]

Results of k_T-algorithm

[Butterworth, Ellis, ARR, hep-ph/0702150]

Simulation

- Monte Carlo study using
 - PYTHIA 6.408 & CTEQ 5L (signal)
 - ALPGEN/HERWIG 6.510/JIMMY (background)
- No detector simulation!
- But quite a lot of background:
 - Wj, Zj, Wjj, Zjj, Wjjj, Zjjj, WW, WZ, ZZ, WWj,
 WZj, ZZj, WWjj, WZjj, ZZjj + ttbar
 - Statistics of 100-300 fb⁻¹ for the most important backgrounds

Looking for the decay

$$\tilde{q}_L \to q' \tilde{\chi}_1^{\pm} \to q' W \tilde{\chi}_1^0$$

Looking for the decay

$$\tilde{q}_L \to q' \tilde{\chi}_1^{\pm} \to q' W \tilde{\chi}_1^0$$

SM background cuts:

- Missing $E_T > 300 \text{ GeV}$
- Three jets with $p_T > 200, 200, 150 \text{ GeV}$
- No leptons with $p_T > 10 \text{ GeV}$

Looking for the decay

$$\tilde{q}_L \to q' \tilde{\chi}_1^{\pm} \to q' W \tilde{\chi}_1^0$$

Identify W jets:

• Using a jet mass cut

$$75 < m_W < 105$$

• Using a jet scale cut

$$1.5 < \log(p_T \sqrt{y}) < 1.9$$

Mass Constraints

Endpoints of distributions are given by:

$$(m_{qW}^{\max/\min})^2 = m_W^2 + \frac{m_{\tilde{q}_L}^2 - m_{\tilde{\chi}_1^{\pm}}^2}{m_{\tilde{\chi}_1^{\pm}}} (E_W \pm |\vec{p}_W|)$$

where

$$|\vec{p}_W|^2 = \frac{(m_{\tilde{\chi}_1^{\pm}}^2 - m_{\tilde{\chi}_1^0}^2 - m_W^2)^2 - 4m_W^2 m_{\tilde{\chi}_1^0}^2}{4m_{\tilde{\chi}_1^{\pm}}^2}$$

Looking for

$$\tilde{q}_L \to q' \tilde{\chi}_1^{\pm} \to q' W \tilde{\chi}_1^0$$

and using

$$\tilde{q}_L \to q \tilde{\chi}_2^0 \to q Z \tilde{\chi}_1^0$$

we get strong constraints between masses

Nominal LSP mass

Conclusions

- Cuts on jet properties mass and separation scale – effective to isolate jets from the hadronic decays of heavy bosons
- The resulting invariant mass distributions put strong constraints on SUSY spectrum
- Important to understand systematics from UE & ISR + detector effects
- Many uses beyond in BSM and even BSUSY...

Sideband Subtraction

Detector Effects

Results from WW WW scattering:

[Butterworth, Davison, ATLAS Jet/ETMiss Group]

mSUGRA?

The MSSM has four types of SUSY-breaking parameters:

$$m_0 \quad m_{1/2} \quad A_0 \quad B_0$$

$$mSUGRA \Rightarrow A_0 = B_0 + m_0$$
 [Nilles, 1984]

CMSSM

EWSB fixes B_0

$$m_0 m_{1/2}$$

$$A_0 \tan(\beta) \operatorname{sgn} \mu$$

mSUGRA

EWSB fixes $tan(\beta)$

$$m_0 m_{1/2}$$

$$A_0 \quad \operatorname{sgn} \mu$$