Radiative Penguin Decays at the B Factories

Karsten Köneke

Massachusetts Institute of Technology

Outline:

- Introduction
- B \rightarrow (ρ/ω) γ
- b \rightarrow s γ
- $B_s \rightarrow \phi \gamma$, $\gamma \gamma$
- · Summary

CKM, SM, New Physics, Belle and BaBar, Analysis

Analysis, Results and the Tevatron

A new technique

The Y(5S) run at Belle

...

Current state of CKM Flavor Physics:

Introduction

• CP violation in the Standard Model is consistently accounted for by the CKM matrix:

CKM Status

Radiative penguin decays:

Decays where leading contribution is Penguin, thus BF $\sim 10^{-4} - 10^{-7}$

- o New physics contributions can enter at the same level as SM contributions!
- Thus, observables can shift w.r.t. the SM prediction.
- o If no conclusive difference between measurements and SM predictions are found, constraints on new physics contributions can be extracted (e.g. exclusion regions in m_{H+} tan β plane from $b \rightarrow s \gamma$)

Excluded regions at 95% C.L. (colored) for MSSM 2-Higgs Doublet Model of type II (PRD 48, 2342 (1993))

Design Goal: Study time dependent CP-violation in the B-meson system

→ Run asymmetric at Y(4S)_resonance

Muon/Hadron Detector

Magnet Coil

Electron/Photon Detector

Cherenkov Detector

Tracking Chamber

Support Tube

Vertex Detector

Basic Machine Parameters:

Beam energies	8 GeV electrons on 3.5 GeV positrons	9 GeV electrons on 3.1 GeV positrons		
Integrated Luminosity	605 fb ⁻¹	411 fb ⁻¹		
Peak Luminosity	17.1 x 10 ³³ cm ⁻² s ⁻¹	12.0 x 10 ³³ cm ⁻² s ⁻¹		

B meson reconstruction: Use two standard variables:

Background suppression - The Name of the Game!

 $\pi^0 \rightarrow \gamma \gamma$ and $\eta \rightarrow \gamma \gamma$ suppression:

High-energy photon usually comes from these decays in background events.

Continuum (e⁺e⁻ → light quark):

9.47 10.00 10.03 10.33 10.37 10.53

Also, use tagging information, i.e. Leptons, Kaons (...) from the other B

Karsten Köneke **SUSY 2007, July 27th**

Radiative Penguin Decays at the B Factories

Overview

Background Rejection

Fits

Sensitive to far side of Unitarity Triangle:

$$\frac{\mathcal{B}(B \to (\rho, \omega)\gamma)}{\mathcal{B}(B \to K^*\gamma)} = \left| \frac{V_{td}}{V_{ts}} \right|^2 \left(\frac{1 - m_{\rho,\omega}^2 / m_B^2}{1 - m_{K^*}^2 / m_B^2} \right)^3 \left(\frac{T_1^{\rho,\omega}(0)}{T_1^{K^*}(0)} \right)^2 [1 + \Delta R]$$

Measures same side of UT triangle as B_d/B_s mixing, but with rather different underlying physics:

CDF

From the Tevatron:

From the Tevatron:
$$\left|\frac{\Delta m_d}{\Delta m_s} \propto \left|\frac{V_{td}}{V_{ts}}\right| = 0.2060 \pm 0.0007 ^{+0.0081}_{-0.0060}$$

Difference in dynamics (such as W annihilation) $\Delta R \approx 0.1 \pm 0.1$

Continuum background rejection:

- Shape variables: Fox-Wolfram Moments, Legendre moments, thrust angle
- B decay properties: cosine of B decay angle $cos\theta_B$, Δz

- Tagging related variables: Presence and properties of Leptons, Kaons, Pions in

the rest-of-the-event

- 1) Construct Fisher from shape variables.
- 2) Build likelihoods for Fisher output, $cos\theta_B$ and Δz , where available (not 1-track ρ^+ mode).
- 3) Depending on a tagging quality variable, cut on product likelihood ratio.

At ~40% signal efficiency, achieve ~95% continuum background rejection efficiency.

Background

Combine all variables with separating power into a neural network (including Δz – even for 1-track ρ^+ mode).

At ~50% signal efficiency, achieve ~98.5% continuum background rejection.

$\mathbf{B} \to (\rho/\omega) \gamma$

Signal extraction with an unbinned maximum likelihood fit:

- Variables used:

- m_{ES} (M_{bc}),

- ΔE.

- Neural network ouput,

- 💦 Cosine of the Helicity angle,
 - Second decay angle in the B $\rightarrow \omega \gamma$ decay,

Based on theory assumptions, build simultaneous fit models:

- For all three modes (ρ^+ , ρ^0 , ω):

e.g. in: A. Ali, A. Parkhomenko hep-ph/0610149

$$\mathcal{B}(B \to (\rho/\omega)\gamma) = \frac{1}{2} \cdot \left(\mathcal{B}(B^+ \to \rho^+ \gamma) + \frac{\tau_{B^+}}{\tau_{B^0}} \cdot \left[\mathcal{B}(B^0 \to \rho^0 \gamma) + \mathcal{B}(B^0 \to \omega \gamma) \right] \right)$$

- For the two ρ modes (ρ^+ , ρ^0), since the inclusion of ω is controversial:

$$\mathcal{B}(B \to \rho \gamma) = \frac{1}{2} \cdot \left(\mathcal{B}(B^+ \to \rho^+ \gamma) + 2 \cdot \frac{\tau_{B^+}}{\tau_{B^0}} \cdot \mathcal{B}(B^0 \to \rho^0 \gamma) \right)$$

Fit datasets simultaneously, only 1 signal yield parameter instead of 2 or 3.

Branching Fractions

|Vtd/Vts|

Isospin

BABAR

PRL 98, 151802 (2007)

316 fb⁻¹

Taret Street At Sixty Support				
Mode	n_{Sig}	Signif.	$\epsilon(\%)$	$\mathcal{B}(10^{-6})$
$B^+ \to \rho^+ \gamma$	$42.0_{-12.7}^{+14.0}$	3.8σ	11.0	$1.10^{+0.37}_{-0.33} \pm 0.09$
$B^0 o ho^0 \gamma$	$38.7^{+10.6}_{-9.8}$	4.9σ	14.1	$0.79^{+0.22}_{-0.20} \pm 0.06$
$B^0 o \omega \gamma$	$11.0^{+6.7}_{-5.6}$	2.2σ	7.9	$0.40^{+0.24}_{-0.20} \pm 0.05$
$B o (ho/\omega)\gamma$		6.4σ		$1.25^{+0.25}_{-0.24} \pm 0.08$
$B o ho \gamma$		6.0σ		$1.36^{+0.29}_{-0.27} \pm 0.09$

PRL 96, 221601 (2006)

350 fb⁻¹

DELLE				
Mode	Yield	Signif.	Efficiency (%)	\mathcal{B} (10 ⁻⁶)
$B^- \to \rho^- \gamma$	8.5	1.6 (1.6)	3.86 ± 0.23	$0.55^{+0.42}_{-0.36}^{+0.09}_{-0.08}$
$\overline B{}^0 \to ho^0 \gamma$	20.7	5.2 (5.2)	4.30 ± 0.28	$1.25^{+0.37}_{-0.33}^{+0.07}_{-0.06}$
$\overline B{}^0 o \omega \gamma$	5.7	2.3(2.6)	2.61 ± 0.21	$0.56^{+0.34}_{-0.27}^{+0.05}_{-0.10}$
$\overline{B} \to (\rho, \omega) \gamma$	36.9	5.1 (5.4)		$1.32^{+0.34}_{-0.31}{}^{+0.10}_{-0.09}$

Combining Belle and BaBar

|Vtd/Vts|

Karsten Köneke SUSY 2007, July 27th

 $\left| \frac{V_{td}}{V_{ts}} \right| = 0.2060 \pm 0.0007^{+0.0081}_{-0.0060}$

Radiative Penguin Decays at the B Factories

In excellent agreement with B_d/B_s mixing

New Physics:

Misiak et. al., hep-ph/0609232

SM expectations (e.g.): $\mathcal{B}(B \to X_s \gamma)$ [E $_{\gamma}$ > 1.6 GeV] = (3.15 ± 0.23) x 10⁻⁴ (NNLO)

confinement

SM expectations (e.g.):
$$\mathcal{B}(B \to X_s \gamma) [E_{\gamma} > 1.6 \text{ GeV}] = (3.15 \pm 0.23) \text{ x } 10^{-4} (NNLO)$$

 $A_{CP}(B \rightarrow X_s \gamma) < 1\%$ (SUSY: up to 20%) b u,c,t

At the quark level: 2-body decay

b quark bound inside B meson:

Moments of Photon Energy Spectrum carry information:

1st moment:
$$\left\langle E_{\gamma}^{B} \right
angle pprox rac{m_{b}}{2}$$
 2nd moment: $\left\langle \left(E_{\gamma}^{B} \right)^{2} \right
angle - \left\langle E_{\gamma}^{B} \right
angle^{2} pprox \mu_{\pi}^{2} pprox E_{kin}^{2} \left(b
ight)$

This information can be used to extract V_{cb} and V_{ub} from semileptonic $b \to c$ and $b \to u$ transitions

Two established experimental methods:

"Sum of Exclusive"

$$E_{\gamma} = \frac{M_B^2 - M(X_s)^2}{2M_B}.$$

- o Ignore X_s system.
- Reconstruct only the γ .

Pros:

- No sensitivity to X_s fragmentation.
- Theoretically clean.

Cons::

- High background.
- o E_{ν} measured in Y(4S) rest frame.

 Fully reconstruct subset of all X_s final states.

Pros:

oLower background. oGood E, resolution in B restframe.

Cons::

oX_s fragmentation systematic. oMissing X_s decay modes.

New approach: Fully reconstructed tag B:

Hadronic decay of one B meson fully reconstructed:

- 4-momentum, charge and flavor known, thus measurement of Isospin and CP asymmetry!
- o With 4-momentum of Y(4S), also 4-momentum of signal B meson known. Thus, photon energy can be measured in signal B rest frame!

Analysis:

- o Veto photons from π^0 , η, ρ decays.
- o Suppress continuum with a Fisher discriminant (12 variables, mostly event shape).

210 fb⁻¹

o Determine partial branching fractions in bins of E_{γ} , using fits to m_{ES} .

Overview

Branching Fractions:

Measured:

BF(B
$$\to$$
X_s γ) [E $_{\gamma}$ > 1.9 GeV] = (3.66 ± 0.85 ± 0.59) x 10⁻⁴

Extrapolated:

BF(B
$$\to$$
X_s γ) [E $_{\gamma}$ > 1.6 GeV] = (3.91 ± 0.91 ± 0.63) x 10⁻⁴

Using: PRD 73, 073008 (2006)

Belle running at the Y(5S)

Producing B_s mesons:

Belle collected 23.6 fb⁻¹ running at the Y(5S) resonance.

This corresponds to about 2.6x10⁶ B_s mesons (~20% uncertainty)

3.2 - Y(4S) CLEO PRL 54, 381 (1985) 3.0 - Y(5S) 2.8 - 2.4

Two radiative penguin decays looked at:

SM prediction:

BF =
$$(4 \pm 1) \times 10^{-5}$$

PRD 75, 054004 (2007)

$$BF = (0.5 - 1.0)x10^{-6}$$

PRD 56, 5805 (1997) JHEP 0208 054 (2002)

Can be enhanced by new physics by up-to an order of magnitude!

B_s meson reconstruction:

- $B_s \rightarrow \phi \gamma$
- φ candidates: Select K⁺ K⁻ pairs with invariant mass of 12 MeV around the nominal φ mass.
- B_s candidates: Standard m_{ES} (M_{bc}) and ΔE reconstruction.

Background suppression:

- **High-energy** γ **from** π^0/η **decays:** Veto by combining high energy photon candidate with other photons in the event.
- Continuum background (e⁺e⁻ to light quark pairs) suppression: Use event topology by utilizing modified Fox-Wolfram moments:

Light-quark Signal background 0.06 0.05 0.04 0.03 0.02 0.01 **SFW**

Final unbinned maximum likelihood fit:

· Use three variables:

	m _{ES} (M _{bc}),	ΔΕ	$cos(\theta_{Helicity})$	
Signal:	Smoothed M	1 - $\cos^2(\theta_{\text{Helicity}})$		
Background:	ARGUS	1 st order Polynomial	Constant	

Belle running at the Y(5S)

Results:

Preliminary

23.6 fb⁻¹

• (18 ± 6) signal events found:
$$\mathcal{B}(B_s o \phi \gamma) = \left(5.7^{+1.8}_{-1.5} \, {}^{+1.2}_{-1.7}
ight) imes 10^{-5}$$

Significance (including systematics): 5.5 σ .

First observation of a radiative B penguin decay!

Signal region projection plots:

Final fit finds no signal:

	$m_{ES} (M_{bc})$	ΔΕ		
Signal:	Smoothed MC-histogram			
Background:	ARGUS	1 st order Polynomial		

$$\mathcal{B}\left(B_s
ightarrow \gamma \gamma
ight) < 8.6 imes 10^{-6} \ (90\% \text{ CL})$$

Summary

Very interesting results in $B \rightarrow (\rho/\omega)\gamma$:

- The BaBar and Belle measurements lead to a first extraction of |V_{td}/V_{ts}| from penguin decays!

$$\left| \frac{V_{td}}{V_{ts}} \right| = 0.202_{-0.016}^{+0.017} \pm 0.015$$

- In excellent agreement with Tevatron measurement. With increased statistics:
 - More precise determination of |V_{td}/V_{ts}|, even theory limited if calculations don't improve...
 - Determination of $|V_{td}/V_{ts}|$ from single modes and measurements of other observables (direct CP violation, Isospin violation).

A promising new method for $b \rightarrow sy$: $BF(B \rightarrow X_s \gamma) [E_y > 1.9 \text{ GeV}] =$

- Recent progress in both experiment and theory (3.66 ± 0.85 ± 0.59) x 10⁻⁴
 - Very good agreement between different experimental approaches.

Preliminary

- Photon energy spectrum measured in B rest frame.
- Soon: measurement of isospin and CP asymmetry.

The Y(55) run at Belle produces interesting new results:

- First measurement of a radiative penguin decay of the B_s meson:

$$\mathcal{B}(B_s o \phi \gamma) = \left(5.7^{+1.8}_{-1.5} \, {}^{+1.2}_{-1.7}\right) imes 10^{-5}$$
 Preliminary

- Six times better upper limit on $\mathcal{B}\left(B_s
ightarrow \gamma\gamma
ight) < 8.6 imes 10^{-6}$

More constraints on new physics to come before LHC!

Backup slides

$B \rightarrow (\rho/\omega) \gamma$ π⁰/η veto

Likelihood based veto system:

In background events, the high energy photon comes mostly from $(\pi^0 \to \gamma \gamma)$ or $(\eta \to \gamma \gamma)$ decays!

Strategy:

- Combine high-energy photon with all other photons in the event.
- Build 2-dim PDF from invariant twophoton mass and second photon energy.
- Construct likelihoods for signal and background.
- Cut on likelihood ratios.

Sensitive to the Unitarity Triangle angle alpha:

$$lpha \equiv \arg \left[-rac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}
ight]$$

$$\sim \frac{V_{ub}V_{ud}^*}{V_{tb}V_{td}^*} = -\left|\frac{V_{ub}V_{ud}^*}{V_{tb}V_{td}^*}\right|e^{i\alpha}$$

Thus:

Isospin violation between $ho^+\gamma$ and $ho^0\gamma$: $\frac{\Gamma(B^+ o
ho^+\gamma)}{2\Gamma(B^0 o
ho^0\gamma)}-1\sim\coslpha$

Systematics

Source of error	$\rho^+\gamma$	$\rho^0 \gamma$	$\omega\gamma$	$\rho\gamma$	$(\rho/\omega)\gamma$
Tracking efficiency	1.0	2.0	2.0	1.4	1.5
Particle identification	2.0	4.0	2.0	2.9	2.7
Photon selection	1.9	2.6	1.7	2.2	2.1
π^0 reconstruction	3.0	-	3.0	1.9	2.5
π^0 and η veto	2.8	2.8	2.8	2.8	2.8
$\mathcal{N}\mathcal{N}$ efficiency	1.0	1.0	1.0	1.0	1.0
$\mathcal{N}\mathcal{N}$ shape	0.4	0.3	2.3	0.4	0.7
Signal PDF shapes	4.8	3.3	2.4	3.1	2.6
B background PDFs	3.9	2.9	9.7	2.6	2.7
$B\overline{B}$ sample size	1.1	1.1	1.1	1.1	1.1
$\mathcal{B}(\omega \to \pi^+\pi^-\pi^0)$	-	-	0.8	-	0.1
Sum in quadrature	8.1	7.4	11.6	6.7	6.7

ρ⁰ transformed NN output

cos θ_{Helicity}

0.2

Projections to all 4 dimensions:

 $\rho^0\gamma$

Full Fit Background Signal

Karsten Köneke SUSY 2007, July 27th Use 4 dimensions (5 for $\omega \gamma$)

-0.2

26/21

Belle running at the Y(5S)

From: J. Wicht, EPS HEP2007, Manchaster, UK

- Beam energies increased by 2.7%
 - smooth running!
- Two samples:
 - June 2005 : 1.86 fb⁻¹.
 - June 2006 : 21.7 fb⁻¹.
- Today's results: 23.6 fb⁻¹.

PRL 98, 052001 (2007) PRD 76, 012002 (2007)

 $N_{Bs}(23.6 \text{ fb}^{-1}) = 2.6 \times 10^6$

~20% uncertainty

 $f_{B_{\bullet}^*B_{\bullet}^*} = (93^{+7}_{-9})\%$

Hadronic events at Y(5S)

bb events u,d,s,c continuum

Bs events

Bs*Bs*

Bu,d events

Bs*Bs **BsBs**