Phenomenology of GUT-less SUSY Breaking

Pearl Sandick
University of Minnesota

Ellis, Olive & PS, Phys. Lett. B **642** (2006) 389 Ellis, Olive & PS, JHEP **06** (2007) 079

Standard CMSSM

- Soft SUSY-breaking parameters
- GUT-scale universality
- Use RGEs to run down to weak scale

GUT-less CMSSM

- Universality at GUT-scale M_{in} < M_{GUT}
 - Constraints from colliders and cosmology:

 $\begin{array}{l} m_h > 114 \ \text{GeV} \\ m_{\chi^\pm} > 104 \ \text{GeV} \end{array} \right\} \begin{array}{l} \text{LEP} \\ \text{BR}(b \rightarrow s \ \gamma) & \text{HFAG} \\ \text{BR}(B_s \rightarrow \mu^+\mu^-) & \text{CDF} \\ (g_\mu -- 2)/2 & \text{g-2 collab} \end{array}$

$$0.09 \leq \Omega_\chi h^2 \leq 0.12$$

SUSY Dark Matter

Solve Boltzmann rate equation:

$$\frac{dn_{\chi}}{dt} = -3Hn_{\chi} - \langle \sigma v_{rel} \rangle \left[n_{\chi}^2 - (n_{\chi}^{eq})^2 \right]$$

- Special Situations:
 - s channel poles
 - 2 $m_{\chi} \approx m_A$
 - thresholds
 - 2 m_γ ≈ final state mass
 - Coannihilations
 - $m_{\chi} \approx m_{other \ sparticle}$

Evolution of the Soft Mass Parameters

$$\frac{(Q)}{M_{in}} m_{1/2}$$

al to 10 is

Pearl Sandick, UMN

Evolution of the Soft Mass Parameters

First evolu

cale

Evolution of the Soft Mass Parameters

Higgs mass parameter, μ (tree level):

$$\mu^2 = \frac{m_1^2 - m_2^2 \tan^2 \beta}{\tan^2 \beta - 1} - \frac{M_Z^2}{2}$$

As $M_{in} \rightarrow low$ scale Q, expect low scale scalar masses to be closer to $m_{0.}$

 μ^{2} becomes generically smaller as $M_{\underline{in}}$ is lowered.

Mass Evolution with Min

 $m_{1/2} = 800 \text{ GeV}$ $m_0 = 1000 \text{ GeV}$ $A_0 = 0$ $tan(\beta) = 10$ $\mu > 0$

Neutralinos and Charginos

$$m_{1/2} = 1800 \text{ GeV}$$
 $m_0 = 1000 \text{ GeV}$
 $A_0 = 0$
 $tan(\beta) = 10$
 $\mu > 0$

Must properly include coannihilations involving all three lightest neutralinos!

Standard CMSSM

Focus Point

 $\mu^2 < 0$ (no EWSB)

stau LSP

Pearl Sandick, UMN

Lowering M_{in} - tan(β) = 10

Large tan(β)

Lowering M_{in} - tan(β) = 50

Pearl Sandick, UMN

$A_0 \neq 0$

- A₀ > 0 ⇒ larger weakscale trilinear couplings,
 A_i
- Large loop corrections to μ depend on A_i , so μ is generically larger over the plane than when A_0 = 0.
- Also see stop-LSP excluded region

Direct Detection: Neutralino-Nucleon Cross Sections

Interaction Lagrangian (neglecting velocity dep. terms):

Sbiu-Debendent Scalar
$$L = \alpha_{2i} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \bar{q}_i \gamma_{\mu} \gamma^5 q_i + \alpha_{3i} \bar{\chi} \chi \bar{q}_i q_i$$

Plot all cross sections not forbidden by constraints

- If
$$\Omega_{\chi}^{\text{calc}} < \Omega_{\text{CDM}}^{\text{WMAP}}$$
, scale by $\Omega_{\chi}^{\text{calc}}/\Omega_{\text{CDM}}^{\text{WMAP}}$

Direct Detection: Neutralino-Nucleon Cross Sections

Direct Detection: Neutralino-Nucleon Cross Sections

Conclusions

- Intermediate scale unification results in:
 - Rapid annihilation funnel even at low $tan(\beta)$
 - Merging of funnel and focus point
- Below some critical M_{in} (dependent on tan(β) and other factors), all of nearly all of the (m_{1/2}, m₀) plane is disfavored because the relic density of neutralinos is too low to fully account for the relic density of cold dark matter.

Neutralino-Nucleon Cross Sections

Neutralino-Nucleon Cross Sections

Sparticle Masses

 $m_{1/2} = 800 \text{ GeV}$ $m_0 = 1000 \text{ GeV}$ $A_0 = 0$ $tan(\beta) = 10$ $\mu > 0$

Squarks

Guaginos

Pearl Sandick, UMN

Lowering Min

Lowering Min

Lowering Min

