D⁰ Mixing at the B-Factories

SUSY 2007, Karlsruhe

Topics

- ✓ Introduction
- ✓ D⁰ mixing formalism
- ✓ BABAR results
 - $D^0 \rightarrow K\pi$ mixing analysis
- ✓ Belle results
 - Lifetime difference analysis
 - $D^0 \rightarrow K_s \pi \pi$ analysis
- √ Summary

Introduction

- \triangleright Neutral meson mixing has been already observed in the K (1956), B_d (1987) and B_s (2006) systems
- ➤ Why is D⁰ mixing interesting?
 - ·It completes the picture of quark mixing already observed in other systems
 - Provides new information about processes with down-type quarks in the mixing loop diagram
 - ·It is an important step towards the observation of CP violation in the Charm sector
 - New physics may be present depending on the measured values of the mixing parameters

D⁰ Mixing Formalism

Neutral D mesons are produced as $\it flavor\ eigenstates\ D^0$ and $\it \overline{D^0}$ and decay via :

$$i\frac{\partial}{\partial t} \left(\begin{array}{c} D^0(t) \\ \overline{D}^0(t) \end{array} \right) = \left(\mathbf{M} - \frac{i}{2} \mathbf{\Gamma} \right) \left(\begin{array}{c} D^0(t) \\ \overline{D}^0(t) \end{array} \right)$$

as mass eigenstates D_1, D_2

$$|D_1\rangle = p|D^0\rangle + q|\overline{D}^0\rangle |D_2\rangle = p|D^0\rangle - q|\overline{D}^0\rangle$$

where $|q|^2 + |p|^2 = 1$ and

$$\left(\frac{q}{p}\right)^2 = \frac{M_{12}^* - \frac{i}{2}\Gamma_{12}^*}{M_{12} - \frac{i}{2}\Gamma_{12}}$$

 D_1,D_2 have masses M_1,M_2 and widths Γ_1,Γ_2

Mixing occurs when there is a non-zero mass difference

$$\Delta M = M_1 - M_2$$

or lifetime difference

$$\Delta\Gamma = \Gamma_1 - \Gamma_2$$

For convenience define quantities x and y

$$x = \frac{\Delta M}{\Gamma}, \ \ y = \frac{\Delta \Gamma}{2\Gamma}$$

where
$$\Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$$

D⁰ Mixing Processes

- Short-distance contributions from mixing box diagrams in the Standard Model are expected to be small:
 - b quark is CKM-suppressed
 - |V_{ub}V*_{cb}|²
 - s and d quarks are GIM suppressed
 - $(m_s^2 m_d^2)/m_W^2$
 - mainly contributes to the mass diff.
 - $x \approx O(10^{-5})$

- Long-distance contributions dominate
 - non-perturbative effects (hard to calculate)
 - expect to be $O(10^{-2})$ or less in the SM
 - mainly affect the lifetime diff. y (but also x)
 - x, $y \approx \sin^2 \theta_C \times [SU(3) \text{ breaking}]^2$
 - Phys.Rev. D **65**, 054034 (2002)
 - Phys.Rev. D **69**, 114021 (2004)

Long-distance

New Physics D^o Mixing Predictions

- Possible enhancements to mixing due to new particles and interactions in new physics models
- Most new physics predictions for x
 - Extended Higgs, tree-level FCNC
 - Fourth generation down-type quarks
 - Supersymmetry: gluinos, squarks
 - Lepto-quarks

- Large possible SM contributions to mixing require observation of either a CP-violating signal or |x| >> |y| to establish presence of NP
- A recent survey (arXiv:0705.365v1) summarizes models and constraints:

Fourth generation	Vector leptoquarks
Q = -1/3 singlet quark	Flavor-conserving Two-Higgs
Q = +2/3 singlet quark	Flavor-changing neutral Higgs
Little Higgs	Scalar leptoquarks
Generic Z'	MSSM
Left-right symmetric	Supersymmetric alignment

BABAR $D^0 \rightarrow K\pi$ mixing analysis

We select a clean sample of D^0 and \bar{D}^0 by tagging the *flavor at production time* using the decays of $D^{*\pm} \to \pi_s^\pm D^0$

- We select events around the expected $\Delta m = m(D_{\rm rec.}^{*+}) - m(D_{\rm rec.}^{0})$

- The charge of the slow pion determines the flavor of the D^θ

We identify the D^0 flavor at decay time using the charge of the Kaon

$$D^0 o K^-\pi^+$$
 right-sign (RS)

$$D^0
ightarrow K^+\pi^-$$
 wrong-sign (WS)

Vertices fit with beamspot constraint determines $\mathbf{m}_{K\pi}$, Δm , proper-time t and error δ_t

Typical D^0 flight length $d \sim 240~\mu \mathrm{m}$ Average resolution $\sigma_d \sim 95~\mu \mathrm{m}$

Time evolution of $D^0 \rightarrow K\pi$ decays

Mixing occurs when a meson produced as a \mathcal{D}^0 decays as a $\overline{\mathcal{D}}^0$ or vice versa

Right sign decays (RS):

- Cabibbo-favored (CF)
$$D^0 \to K^-\pi^+ \longleftrightarrow$$
 no mixing

Wrong sign decays (WS):

- - Rate ($R_{\rm M}$): 10^{-4} or less

- Cabibbo-favored (CF)
$$D^0 \to K^-\pi^+ \longleftrightarrow$$
 no mixing D^0 WS decays ong sign decays (WS):

- Doubly Cabibbo-supressed (DCS)

- Rate $(R_{\rm D})$: $\tan^4\theta_{\rm C}\approx 0.3\%$

- Mixing followed by CF decay

- Rate $(R_{\rm M})$: 10^{-4} or less

Need to discriminate between DCS and Mixing decays by their proper time evolution (assuming CP-conservation and $|x| \ll 1$, $|y| \ll 1$):

$$\frac{d\Gamma}{dt}[|D^{0}(t)\rangle \to f] \propto e^{-\Gamma t} \left(R_{\rm D} + \sqrt{R_{\rm D}} y' \; \Gamma t + \frac{{x'}^2 + {y'}^2}{4} (\Gamma t)^2 \right)$$

DCS decay

Interference between DCS and mixing

Mixing

$$x' = x \cos \delta_{K\pi} + y \sin \delta_{K\pi}, \quad y' = -x \sin \delta_{K\pi} + y \cos \delta_{K\pi}$$

 $\delta_{\textbf{\textit{K}}\pi}$: strong phase difference between CF and DCS decay amplitudes

RS and WS $m_{K\pi}$, Δm Distributions

All fits are over the *full range* shown in the plots

1.81 GeV/c² < $m_{K\pi}$ < 1.92 GeV/c² and 0.14 GeV/c² < Δ m < 0.16 GeV/c²

Define a signal region

1.843 GeV/c² < $m_{K\pi}$ < 1.883 GeV/c² and 0.1445 GeV/c² < Δm < 0.1465 GeV/c²

Mixing WS decay time fit

The difference between the no-mixing fit and the fit with mixing is shown in the residuals plot.

The points represent the data minus the no-mixing fit (effectively the dashed line ---)

The <u>solid</u> curve represent the <u>mixing</u> fit minus the no-mixing fit

The fit is significantly improved by allowing for mixing.

 $0.1445 \text{ GeV}/c^2 < \Delta m < 0.1465 \text{ GeV}/c^2$

Mixing fit likelihood contours

Contours in y', x'^2 computed from $-2\Delta \ln L$

- Best-fit point is in the non-physical region $x^2 < 0$
- 1σ contour extends into physical region
- Correlation: -0.95

Contours include systematic errors

The no-mixing point is at the 3.9σ contour

Fits show no evidence for CP violation

 $R_{\rm D}$: $(3.03 \pm 0.16 \pm 0.10) \times 10^{-3}$ x^{2} : $(-0.22 \pm 0.30 \pm 0.21) \times 10^{-3}$

y': $(9.7 \pm 4.4 \pm 3.1) \times 10^{-3}$

BABAR vs. BELLE $D^0 \rightarrow K\pi$ result

Results consistent within 20

Average $K\pi$ Mixing Results

Heavy flavor averaging group (HFAG) provides "official" averages

Combine BaBar and Belle likelihoods in 3 dimensions (R_D, x'^2, y')

PRL 98,211802 (2007)

PRL 96,151801 (2006)

July 2007 Averages:

$$R_D = (3.30 {}^{+0.14}_{-0.12}) \times 10^{-3}$$

$$x'^2 = (-0.01 \pm 0.20) \times 10^{-3}$$

$$y' = (5.5 + 2.8) \times 10^{-3}$$

BELLE $K^{+}K^{-}$, $\pi^{+}\pi^{-}$ lifetime ratio

Look for a lifetime difference y_{CP} between $D^0 \rightarrow K^+K^-$, $\pi^+\pi^-$ (CP-even) and the $D^0 \rightarrow K^-\pi^+$ (CP-mixed)

$$y_{CP} = \frac{\tau(K^-\pi^+)}{\tau(K^-K^+)} - 1 = \frac{\tau(K^-\pi^+)}{\tau(\pi^-\pi^+)} - 1$$

If CP is conserved, then $y_{CP} = y$

CP violation would give a lifetime difference in D^0 and $\overline{D}{}^0$ decays to K^+K^- , $\pi^+\pi^-$ final states,

Measure e.g.:

$$A_{\Gamma} = \frac{\tau(\overline{D}^{0} \to K^{-}K^{+}) - \tau(D^{0} \to K^{+}K^{-})}{\tau(\overline{D}^{0} \to K^{-}K^{+}) + \tau(D^{0} \to K^{+}K^{-})}$$

Decay time Distributions

BELLE K^+K^- , $\pi^+\pi^-$ lifetime ratio

PRL 98,211803 (2007)

Measure lifetime difference of CP eigenstates

$$y_{CP} = \frac{\tau(K^-\pi^+)}{\tau(K^-K^+)} - 1 = \frac{\tau(K^-\pi^+)}{\tau(\pi^-\pi^+)} - 1$$

From the combined fit to KK and $\pi\pi$:

Evidence for $D^0 - \overline{D}{}^0$ mixing (regardless of possible CPV)

$$y_{CP} = (1.31 \pm 0.32 \pm 0.25) \%$$

 $> 3\sigma$ above zero

$$A_{\Gamma} = (0.01 \pm 0.30 \pm 0.15) \%$$

no evidence for CP violation

Decay time distributions

BELLE $D^O \rightarrow K_s \pi \pi$ Analysis

Time-dependent, Dalitz-plot analysis using $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K_s \pi \pi$ + c.c. decays Self-conjugate mode Initially-produced D^0 decay amplitude is given by

$$M(m_{-}^{2}, m_{+}^{2}, t) = \mathcal{A}(m_{-}^{2}, m_{+}^{2}) \frac{e_{1}(t) + e_{2}(t)}{2} + \frac{q}{p} \overline{\mathcal{A}}(m_{+}^{2}, m_{-}^{2}) \frac{e_{1}(t) - e_{2}(t)}{2}$$

where ${\cal A}$ and $\overline{\cal A}$ are amplitudes for decay to D^0 or $\overline{D}{}^0$ as functions of phase-space variables, and

$$m_{\pm} = \begin{cases} m(K_s, \pi^{\pm}) & D^{*+} \to D^0 \pi^+ \\ m(K_s, \pi^{\mp}) & D^{*-} \to \overline{D}^0 \pi^- \end{cases} \qquad e_{1,2}(t) = \exp\left(-i(m_{1,2} - i\Gamma_{1,2}/2)t\right)$$

Measures x and y directly

All phases are measured in the Dalitz plot analysis

BELLE $D^O \rightarrow K_s \pi \pi$ Analysis

Dalitz fit model

- 18 BW resonances + a non-resonant contribution :

TABLE I: Fit results for Dalitz plot parameters.

TABLE I: Fit results for Dalitz plot parameters.					
Resonance	Amplitude	Phase (deg)	Fit fraction		
K*(892)-	1.629 ± 0.005	134.3 ± 0.3	0.6227		
$K_0^*(1430)^-$	2.12 ± 0.02	-0.9 ± 0.5	0.0724		
$K_2^*(1430)^-$	0.87 ± 0.01	-47.3 ± 0.7	0.0133		
$K^*(1410)^-$	0.65 ± 0.02	111 ± 2	0.0048		
$K^*(1680)^-$	0.60 ± 0.05	147 ± 5	0.0002		
K*(892)+	0.152 ± 0.003	-37.5 ± 1.1	0.0054		
$K_0^*(1430)^+$	0.541 ± 0.013	91.8 ± 1.5	0.0047		
$K_2^*(1430)^+$	0.276 ± 0.010	-106 ± 3	0.0013		
$K^*(1410)^+$	0.333 ± 0.016	-102 ± 2	0.0013		
$K^*(1680)^+$	0.73 ± 0.10	103 ± 6	0.0004		
$\rho(770)$	1 (fixed)	0 (fixed)	0.2111		
$\omega(782)$	0.0380 ± 0.0006	115.1 ± 0.9	0.0063		
$f_0(980)$	0.380 ± 0.002	-147.1 ± 0.9	0.0452		
$f_0(1370)$	1.46 ± 0.04	98.6 ± 1.4	0.0162		
$f_2(1270)$	1.43 ± 0.02	-13.6 ± 1.1	0.0180		
$\rho(1450)$	0.72 ± 0.02	40.9 ± 1.9	0.0024		
σ_1	1.387 ± 0.018	-147 ± 1	0.0914		
σ_2	0.267 ± 0.009	-157 ± 3	0.0088		
NR	2.36 ± 0.05	155 ± 2	0.0615		

BELLE $D^O \rightarrow K_s \pi \pi$ Results

Proper-time fit results

$$\vec{x} = (0.80 \pm 0.29 \pm 0.17)\%$$
 (2.4 σ)

$$y = (0.33 \pm 0.24 \pm 0.15)\%$$

arXiv:0704.1000

540 fb⁻¹

Largest systematics:

In x: from Dalitz fit model

In y: from event selection

Average D⁰ Mixing Results

Heavy flavor averaging group (HFAG)

Combine all available measurements (likelihoods) in 3 dimensions (x, y, δ)

July 2007 Averages:

$$\delta = 0.33 + 0.26$$

$$x = (0.87 + 0.30) \times 10^{-2}$$

$$y = (0.66 + 0.21) \times 10^{-2}$$

Summary

- BABAR: Evidence for D⁰ mixing at 3.9 σ (K π analysis)
- BELLE: Evidence for D⁰ mixing at 3.2σ (Lifetime ratio)
- The combined BABAR plus Belle result is inconsistent with the null mixing hypothesis at the 4σ level and show no evidence for CP violation.
- HFAG combined average in 3 dimensions (x, y, δ) excludes the no mixing hypothesis at 5σ level
- Oscillations in the theory of SM long-distance contributions to D⁰ mixing have been observed.
- More precise measurements of D-meson mixing and CP violation parameters as well as better calculations are needed in order to find hints of New Physics effects.
- New results from BABAR (Lifetime ratio, Dalitz) and Belle analyses are underway.

Backup Slides

Fit Procedure

Unbinned maximum likelihood fit in several steps (high demand on computing resources, 1+ million events)

Fit to $m(K\pi)$ and Δm distribution:

- -RS and WS samples fit simultaneously
- -Signal and some background parameters shared
- -All parameters determined in fit to data, not MC

Fit RS decay time distribution:

- -Determines D^{O} lifetime and resolution function
- -Include event-by-event decay time error δt in resolution
- -Use m(Kp) and Δ m to separate signal/bkgd (fixed shapes)

Fit WS decay time distribution:

- -Use Do lifetime and resolution function from RS fit
- -Compare fit with and without mixing (and CP violation)

Wrong-sign $m_{K\pi}$, Δm fit

The $m_{K\pi}$, Δm fit determines the WS b.r. $R_{WS} = N_{WS}/N_{RS}$

BABAR (384 fb⁻¹): $R_{WS} = (0.353 \pm 0.008 \pm 0.004)\%$ (PRL 98,211802 (2007))

BELLE (400 fb⁻¹): $R_{WS} = (0.377 \pm 0.008 \pm 0.005)\%$ (PRL 96, 151801 (2006))

No-mixing WS decay time fit

The parameters fitted are WS category yields WS combinatoric shape parameter

As can be seen in the residual plot, there are large residuals.

Residuals = data - fit

WS <u>no-mixing</u> fit projection in signal region 1.843 GeV/ $c^2 < m < 1.883$ GeV/ c^2 0.1445 GeV/ $c^2 < \Delta m < 0.1465$ GeV/ c^2

R_{WS} vs. decay-time slices

If mixing is present, it should be evident in a R_{WS} rate that increases with decay-time.

Perform the R_{WS} fit in five time bins with similar RS statistics.

Cross-over occurs at $t \approx 0.5$ psec Similar to residuals plot.

Dashed line: standard R_{WS} fit (χ^2 =24). Solid, red line: independent R_{WS} fits to each time bin (χ^2 = 1.5).

List of systematics, validations

Systematics: variations in
Functional forms of PDFs
Fit parameters
Event selection
Computed using <u>full</u> difference
with original value
Results are expressed in units of
the statistical error

Systematic source	R_{D}	ý	x' ²
PDF:	0.59σ	0.45σ	0.40σ
Selection criteria:	0.24σ	0.55σ	0.57σ
Quadrature total:	0.63σ	0.71σ	0.70σ

Validations and cross-checks Alternate fit (R_{WS} in time bins) Fit RS data for mixing $x^2 = (-0.01 \pm 0.01) \times 10^{-3}$ $\vec{v} = (0.26 \pm 0.24) \times 10^{-3}$ Fit generic MC for mixing $x^2 = (-0.02 \pm 0.18) \times 10^{-3}$ $y' = (2.2\pm3.0)x10^{-3}$ Fit toy MCs generated with various values of mixing Reproduces generated values Validation of proper frequentist coverage in contour construction Uses 100,000 MC toy simulations

PEP-II a Charm Factory: We use 384 fb⁻¹ e⁺e⁻ \rightarrow c, \bar{c}

$$\sigma(b\bar{b}) = 1.1 nb$$

 \rightarrow 500 X 10° $c\bar{c}$ events

 $\sigma(c\bar{c}) = 1.3 nb$

The BaBar Detector

Average Kπ Mixing Results

Heavy flavor averaging group (HFAG) provides "official" averages

Combine BaBar and Belle likelihoods in 3 dimensions (R_D, x'^2, y')

May 2007 Averages:

$$R_D$$
: $(3.30^{+0.14}_{-0.12}) \times 10^{-3}$

$$x^2$$
: (-0.01±0.20) × 10⁻³

$$y'$$
: $(5.5^{+2.8}_{-3.7}) \times 10^{-3}$

Average \boldsymbol{y}_{cp}

Average \mathbf{A}_{Γ}

Average y

Average \boldsymbol{x}

