Bounds on R-Parity Violation from Rare Decay Data

Ben O'Leary

SUSY'07, Karlsruhe, 27/07/2007

Outline

1 Introduction to RPV

Outline

- 1 Introduction to RPV
- 2 Implications of RPV

Outline

- 1 Introduction to RPV
- 2 Implications of RPV
- 3 Bounds on RPV

Outline

- 1 Introduction to RPV
- 2 Implications of RPV
- 3 Bounds on RPV
- 4 Summary

R–Parity conserving "Yukawa" superpotental

R–Parity conserving "Yukawa" superpotental

 $\mu H_{\mu} H_{d}$

R-Parity conserving "Yukawa" superpotental

$$\mu H_u H_d + Y_{jk}^e H_d L_{jL} e_{kR}^c$$

R–Parity conserving "Yukawa" superpotental

$$\begin{array}{l} \mu H_u H_d \\ + Y^e_{jk} H_d L_{jL} e^c_{kR} \\ + Y^d_{jk} H_d Q_{jL} d^c_{kR} \end{array}$$

R-Parity conserving "Yukawa" superpotental

$$\mu H_u H_d \\ + Y_{jk}^e H_d L_{jL} e_{kR}^c \\ + Y_{jk}^d H_d Q_{jL} d_{kR}^c \\ + Y_{jk}^u H_u Q_{jL} u_{kR}^c$$

R–Parity conserving "Yukawa" superpotental

$$\mu H_{u}H_{d}$$

 $+Y_{jk}^{e}H_{d}L_{jL}e_{kR}^{c}$
 $+Y_{jk}^{d}H_{d}Q_{jL}d_{kR}^{c}$
 $+Y_{jk}^{u}H_{u}Q_{jL}u_{kR}^{c}$

R–Parity violating "Yukawa" superpotental

$$\mu H_{u}H_{d}$$

 $+Y_{jk}^{e}H_{d}L_{jL}e_{kR}^{c}$
 $+Y_{jk}^{d}H_{d}Q_{jL}d_{kR}^{c}$
 $+Y_{jk}^{u}H_{u}Q_{jL}u_{kR}^{c}$

R-Parity violating "Yukawa" superpotental

$$\mu'_j H_u L_{jL}$$

R-Parity conserving "Yukawa" superpotental

$$\mu H_{u}H_{d}$$

 $+Y_{jk}^{e}H_{d}L_{jL}e_{kR}^{c}$
 $+Y_{jk}^{d}H_{d}Q_{jL}d_{kR}^{c}$
 $+Y_{jk}^{u}H_{u}Q_{jL}u_{kR}^{c}$

R-Parity violating "Yukawa" superpotental

$$\mu'_{j}H_{u}L_{jL} + \frac{1}{2}\lambda_{ijk}L_{iL}L_{jL}e^{c}_{kR}$$

R-Parity conserving "Yukawa" superpotental

$$\mu H_{u}H_{d}$$

 $+Y_{jk}^{e}H_{d}L_{jL}e_{kR}^{c}$
 $+Y_{jk}^{d}H_{d}Q_{jL}d_{kR}^{c}$
 $+Y_{jk}^{u}H_{u}Q_{jL}u_{kR}^{c}$

R-Parity violating "Yukawa" superpotental

$$\begin{array}{l} \mu'_{j}H_{u}L_{jL} \\ +\frac{1}{2}\lambda_{ijk}L_{iL}L_{jL}e^{c}_{kR} \\ +\lambda'_{ijk}L_{iL}Q_{jL}d^{c}_{kR} \end{array}$$

$$\mu H_{u}H_{d}$$

 $+Y_{jk}^{e}H_{d}L_{jL}e_{kR}^{c}$
 $+Y_{jk}^{d}H_{d}Q_{jL}d_{kR}^{c}$
 $+Y_{jk}^{u}H_{u}Q_{jL}u_{kR}^{c}$

R-Parity violating "Yukawa" superpotental

$$\mu'_j H_u L_{jL}$$

 $+ \frac{1}{2} \lambda_{ijk} L_{iL} L_{jL} e^c_{kR}$
 $+ \lambda'_{ijk} L_{iL} Q_{jL} d^c_{kR}$
 $+ \frac{1}{2} \lambda''_{ijk} u^c_{iR} d^c_{kR} d^c_{kR}$

Implications of RPV

Implications of R-Parity Violation

Baryon and lepton number violation:

- Single sparticle production
- Lightest Supersymmetric Partner is unstable
- Proton decay

Implications of R-Parity Violation

Baryon and lepton number violation:

- Single sparticle production
- Lightest Supersymmetric Partner is unstable
- Proton decay

Neutrino mass

Implications of R-Parity Violation

Baryon and lepton number violation:

- Single sparticle production
- Lightest Supersymmetric Partner is unstable
- Proton decay

Neutrino mass

Flavor violation

How To Bound R-Parity Violation

Rare decay data (bounds on $\lambda_{iik}^{(\prime(\prime))} \lambda_{lmn}^{(\prime(\prime))}/m_{\tilde{t}}^2$)

How To Bound R-Parity Violation

Rare decay data (bounds on $\lambda_{ijk}^{(\prime(\prime))}\lambda_{lmn}^{(\prime(\prime))}/m_{\tilde{t}}^2)$

Collider data:

How To Bound R-Parity Violation

Rare decay data (bounds on $\lambda_{ijk}^{(\prime(\prime))}\lambda_{lmn}^{(\prime(\prime))}/m_{\tilde{t}}^2)$

Collider data:

■ OPAL (sparticle–mass–dependent bounds on $\lambda_{iik}\lambda_{lmn}$)

How To Bound R-Parity Violation

Rare decay data (bounds on $\lambda_{iik}^{(\prime(\prime))}\lambda_{lmn}^{(\prime(\prime))}/m_z^2$)

Collider data:

- OPAL (sparticle–mass–dependent bounds on $\lambda_{iik}\lambda_{lmn}$)
- HERA (sparticle–mass–dependent bounds on $\lambda'_{ijk}\lambda'_{lmn}$, or more usually λ' -dependent bounds on sparticle masses)

How To Bound R-Parity Violation

Rare decay data (bounds on $\lambda_{ijk}^{(\prime(\prime))}\lambda_{lmn}^{(\prime(\prime))}/m_{\tilde{t}}^2)$

Collider data:

- OPAL (sparticle–mass–dependent bounds on $\lambda_{ijk}\lambda_{lmn}$)
- HERA (sparticle–mass–dependent bounds on $\lambda'_{ijk}\lambda'_{lmn}$, or more usually λ' –dependent bounds on sparticle masses)
- Forward-backward asymmetries in fermion pair-production

How To Bound R-Parity Violation

Rare decay data (bounds on $\lambda_{iik}^{(\prime(\prime))}\lambda_{lmn}^{(\prime(\prime))}/m_z^2$)

Collider data:

- OPAL (sparticle–mass–dependent bounds on $\lambda_{ijk}\lambda_{lmn}$)
- HERA (sparticle–mass–dependent bounds on $\lambda'_{ijk}\lambda'_{lmn}$, or more usually λ' -dependent bounds on sparticle masses)
- Forward-backward asymmetries in fermion pair-production

Cosmology (Nucleosynthesis \rightarrow couplings $> 10^{-12}$ or $< 10^{-20}$)

How To Bound R-Parity Violation

Rare decay data (bounds on $\lambda_{iik}^{(\prime(\prime))}\lambda_{lmn}^{(\prime(\prime))}/m_z^2$)

Collider data:

- OPAL (sparticle–mass–dependent bounds on $\lambda_{ijk}\lambda_{lmn}$)
- HERA (sparticle–mass–dependent bounds on $\lambda'_{ijk}\lambda'_{lmn}$, or more usually λ' -dependent bounds on sparticle masses)
- Forward-backward asymmetries in fermion pair-production

Cosmology (Nucleosynthesis
$$ightarrow$$
 couplings $> 10^{-12}$ or $< 10^{-20}$)

Atomic parity violation data, $\mu \rightarrow e$ conversion in atoms, ...

Bounds from Rare Decay Data

H. K. Dreiner, M. Krämer, B. O'L., Phys. Rev. D 75 (2007) 114016 [4]: a review of bounds on R-Parity-violating couplings from

Bounds from Rare Decay Data

- H. K. Dreiner, M. Krämer, B. O'L., Phys. Rev. D **75** (2007) 114016 [4]: a review of bounds on *R*–Parity–violating couplings from
 - purely leptonic two-body decays of mesons

Bounds from Rare Decay Data

H. K. Dreiner, M. Krämer, B. O'L., Phys. Rev. D **75** (2007) 114016 [4]: a review of bounds on R-Parity-violating couplings from

- purely leptonic two-body decays of mesons
- \blacksquare two-body decays of τ leptons to electrons/muons and neutral mesons

Bounds on RPV

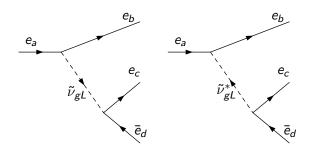
Upper bounds on RPV

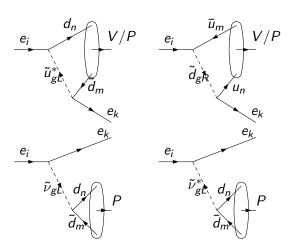
Bounds from Rare Decay Data

H. K. Dreiner, M. Krämer, B. O'L., Phys. Rev. D **75** (2007) 114016 [4]: a review of bounds on *R*–Parity–violating couplings from

- purely leptonic two-body decays of mesons
- \blacksquare two–body decays of τ leptons to electrons/muons and neutral mesons
- lacktriangle decays of au leptons and muons into three charged leptons

Bounds from Rare Decay Data


H. K. Dreiner, M. Krämer, B. O'L., Phys. Rev. D **75** (2007) 114016 [4]: a review of bounds on *R*–Parity–violating couplings from


- purely leptonic two-body decays of mesons
- \blacksquare two–body decays of τ leptons to electrons/muons and neutral mesons
- decays of τ leptons and muons into three charged leptons $\Gamma = 0$ (through baryon triality):

All λ''_{ijk} set to 0 (through baryon triality):

- prevents proton decay while allowing for neutrino mass
- lepton-number parity is not discrete gauge anomaly-free
- even R-Parity does not prevent proton decay through dimension-5 operators

Coupling combination	Bound	Decay
$\lambda_{g23} \lambda'_{g12}$	$1.0 \times 10^{-3} \ [\tilde{\nu}_{gL}]^2$	$ au{ ightarrow}\mu K_{\mathcal{S}}$
$\lambda_{g32} \lambda'_{g21}$		
$\lambda'_{1g1}\lambda'_{3g2}$	$2.3 \times 10^{-3} \ [\tilde{u}_{gL}]^2$	$ au{ ightarrow}eK_{\mathcal{S}}$
$\lambda'_{1g2}\lambda'_{2g2}$	$1.5 \times 10^{+2} \ [\tilde{u}_{gL}]^2$	$\eta{ ightarrow}\muar{ extsf{e}}+ extsf{e}ar{\mu}$
$\lambda'_{1g2}\lambda'_{3g2}$ †(-)	$1.2 \times 10^{-3} \ [\tilde{u}_{gL}]^2$	$ au{ ightarrow}e\eta$
$\lambda'_{1g2}\lambda'_{3g2}$	$3.4 \times 10^{-3} \ [\tilde{u}_{gL}]^2$	$ au{ ightarrow}e\phi$
$\lambda'_{2g2}\lambda'_{3g2}$ †(-)	$1.6 \times 10^{-3} \ [\tilde{u}_{gL}]^2$	$\tau \rightarrow \mu \eta$

Table: Example coupling combinations which had no bounds previously.

Coupling		
combination	Bound	Bound
$\lambda_{g13} \ \lambda'_{g22}$,	$4.6 \times 10^{-4} \ [\tilde{\nu}_{gL}]^2$	$1.6 \times 10^{-2} \ [\tilde{\nu}_{gL}]^2$
$\lambda_{g31} \; \lambda'_{g22}$	$ au{ o}$ e η	$ au{ ightarrow}e\eta$
$\lambda_{g13} \ \lambda'_{g21}$,	$9.7 \times 10^{-4} \ [\tilde{\nu}_{gL}]^2$	$8.5 \times 10^{-2} \ [\tilde{\nu}_{gL}]^2$
$\lambda_{g31} \; \lambda'_{g12}$	$ au{ ightarrow}eK_{\mathcal{S}}$	$ au{ ightarrow}e K^0$

Table: Example coupling combinations which have improved by a factor of 30 or more compared to those published previously.

Not all bounds were improved, e.g.

Coupling combination	Bound	Bound
$\lambda_{121} \lambda'_{111}$	$\begin{array}{c} 1.2 \times 10^{-2} \left[\tilde{\nu}_{1L} \right]^2 \\ \pi^0 \rightarrow e \bar{\mu} \end{array}$	$\begin{array}{c} 2.1 \times 10^{-8} \ [\tilde{\nu}_{1L}]^2 \\ \mu \rightarrow e \ \text{in} \ ^{48}\text{Ti} \end{array}$
$\lambda_{211} \; \lambda'_{223}$	$2.3 \times 10^{-4} \left[\tilde{\nu}_{2L} \right]^2$ $B_s^0 \rightarrow e\bar{e}$	$1.4 \times 10^{-4} \left[\tilde{\nu}_{2L} \right]^2$ $B_d^0 \rightarrow K^0 e \bar{e}$

Summary

Summary and Outlook

R–Parity bans some awkward terms in the MSSM.

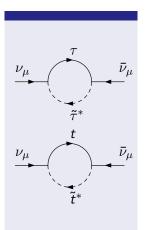
Allowing the R-Parity-violating terms can provide a mechanism for neutrino mass without adding a right-handed neutrino field.

Allowing these terms also provides a variety of interesting new flavor physics, though severely constrained by experiment.

No strict lower bound exists for these couplings, but upper bounds could rule out neutrino mass from RPV; most upper bounds are still about an order of magnitude above the value consistent with neutrino masses.

P. Fayet, Nucl. Phys. B **90** (1975) 104.

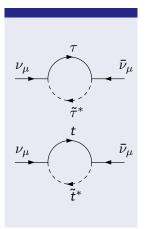
R. E. Marshak and R. N. Mohapatra, Phys. Lett. B **91** (1980) 222.


R. Barbier *et al.*, Phys. Rept. **420** (2005) 1 [arXiv:hep-ph/0406039].

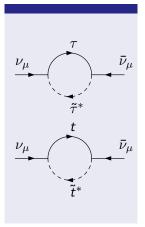
H. K. Dreiner, M. Kramer and B. O'Leary, Phys. Rev. D **75** (2007) 114016 [arXiv:hep-ph/0612278].

Lower bounds

Are there lower bounds on these couplings?



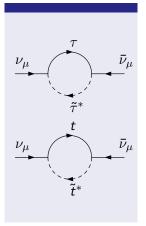
 τ – $\tilde{\tau}$ loop contribution to muon neutrino mass:


Lower bounds

Are there lower bounds on these couplings?

 τ – $\tilde{\tau}$ loop contribution to muon neutrino mass: $|\lambda_{233}|^2/m_{\tilde{\tau}_{I}}^2 \approx (4\pi)^2 m_{\nu_{\mu}}/(\mu \tan{(\beta)} m_{\tau}^2)$

Are there lower bounds on these couplings?



 τ – $\tilde{\tau}$ loop contribution to muon neutrino mass: $|\lambda_{233}|^2/m_{\tilde{\tau}_t}^2 \approx (4\pi)^2 m_{\nu_u}/(\mu \tan{(\beta)} m_{\tau}^2)$

Assuming $\mu \approx m_{\tilde{\tau}_l} \approx 100$ GeV, $\tan \beta \approx 30$, $m_{\nu_{\mu}} \approx 0.3 \text{ eV}$,

Lower bounds

Are there lower bounds on these couplings?

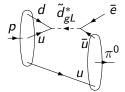
 τ – $\tilde{\tau}$ loop contribution to muon neutrino mass: $|\lambda_{233}|^2/m_{\tilde{\tau}_t}^2 \approx (4\pi)^2 m_{\nu_u}/(\mu \tan{(\beta)} m_{\tau}^2)$

$$|\lambda_{233}|/m_{ ilde{ au}_L} pprox (4\pi)^- m_{
u_\mu}/(\mu an(eta)m_{ au}^-)$$

Assuming $\mu \approx m_{\tilde{\tau}_l} \approx 100$ GeV, $\tan \beta \approx 30$, $m_{\nu_{\mu}} \approx 0.3 \text{ eV}$,

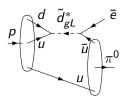
$$|\lambda_{233}|^2 pprox 10^{-5} (m_{\tilde{ au}_L}/100 \text{ GeV})^2$$

Proton decay


Proton decay

All λ' s and λ'' s present and of order 1, with sparticle masses of order 1 TeV, leads to proton decay with a disappointingly short lifetime ($\sim 10^{50}$ times too short (R. Barbier *et al.*, Phys. Rept. **420** (2005) 1 [arXiv:hep-ph/0406039])).

Proton decay


All λ' s and λ'' s present and of order 1, with sparticle masses of order 1 TeV, leads to proton decay with a disappointingly short lifetime ($\sim 10^{50}$ times too short (R. Barbier *et al.*, Phys. Rept. **420** (2005) 1 [arXiv:hep-ph/0406039])).

Proton decay

All λ' s and λ'' s present and of order 1, with sparticle masses of order 1 TeV, leads to proton decay with a disappointingly short lifetime ($\sim 10^{50}$ times too short (R. Barbier *et al.*, Phys. Rept. **420** (2005) 1 [arXiv:hep-ph/0406039])).

However, it is sufficient to enforce either lepton number conservation (though this is not anomaly–free) by setting $\lambda_{ijk} = \lambda'_{ijk} = 0$, or baryon number conservation by setting $\lambda''_{ijk} = 0$.

How Collider Bounds Compare to Decay Bounds

The OPAL collaboration published upper bounds on lepton flavor–violating two–to–two scatterings from the LEP2 run at $\sqrt{s}\sim$ 200 GeV (G. Abbiendi *et al.* [OPAL Collaboration], Phys. Lett. B **519** (2001) 23 [arXiv:hep-ex/0109011]).

These can be translated into upper bounds on λ - λ couplings as a function of the sneutrino mass.

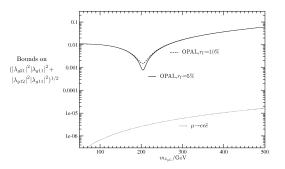


Figure: The bounds on $(|\lambda_{g21}|^2|\lambda_{g11}|^2+|\lambda_{g12}|^2|\lambda_{g11}|^2)^{1/2}$ as a function of $m_{ ilde{
u}_{\sigma l}}$ from the search for $ear{e}{
ightarrow}\muar{e}/ear{\mu}$ by OPAL in the range 200 GeV $<\sqrt{s}<209$ GeV.

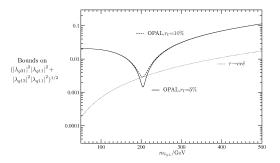


Figure: The bounds on $(|\lambda_{g21}|^2|\lambda_{g11}|^2+|\lambda_{g12}|^2|\lambda_{g11}|^2)^{1/2}$ as a function of $m_{\tilde{\nu}_{gL}}$ from the search for $e\bar{e} \rightarrow \mu\bar{e}/e\bar{\mu}$ by OPAL in the range 200 GeV $\leq \sqrt{s} \leq$ 209 GeV.

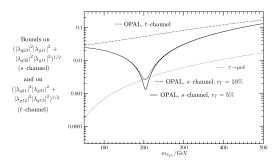


Figure: The bounds on $(|\lambda_{g21}|^2|\lambda_{g11}|^2+|\lambda_{g12}|^2|\lambda_{g11}|^2)^{1/2}$ as a function of $m_{\tilde{\nu}_{gL}}$ from the search for $e\bar{e} \rightarrow \mu\bar{e}/e\bar{\mu}$ by OPAL in the range 200 GeV $\leq \sqrt{s} \leq$ 209 GeV.

Spontaneously violated R-Parity

Spontaneously violated *R*–Parity?

Higgs vacuum expectation value: $Y_{jk}^e H_d L_{jL} e_{kR}^c \rightarrow m_{jk}^e \bar{e}_k e_j$

Spontaneously violated R-Parity

Spontaneously violated R-Parity?

Higgs vacuum expectation value: $Y_{ik}^e H_d L_{jL} e_{kR}^c \rightarrow m_{ik}^e \bar{e}_k e_j$

Sneutrino vacuum expectation value: $Y_{ik}^e H_d L_{iL} e_{kR}^c \rightarrow m'_{ik} \bar{e}_k \tilde{h}_d^-$

Spontaneously violated R-Parity

Spontaneously violated R-Parity?

Higgs vacuum expectation value: $Y_{ik}^e H_d L_{jL} e_{kR}^c \rightarrow m_{ik}^e \bar{e}_k e_j$

Sneutrino vacuum expectation value: $Y_{ik}^e H_d L_{iL} e_{kR}^c \rightarrow m'_{ik} \bar{e}_k \bar{h}_d^-$

Right-handed neutrino superpotential: $Y_{ik}^{\nu}H_{u}L_{iL}\nu_{kR}^{c}$

Spontaneously violated R-Parity?

Higgs vacuum expectation value: $Y_{jk}^e H_d L_{jL} e_{kR}^c \rightarrow m_{jk}^e \bar{e}_k e_j$

Sneutrino vacuum expectation value: $Y_{jk}^e H_d L_{jL} e_{kR}^c \rightarrow m'_{jk} \bar{e}_k \tilde{h}_d^-$

Right-handed neutrino superpotential: $Y_{jk}^{\nu}H_{u}L_{jL}\nu_{kR}^{c}$

"Right-handed" sneutrino vacuum expectation value:

$$Y_{jk}^{\nu}H_{u}L_{jL}\nu_{kR}^{c} \rightarrow m'_{jk}e_{j}^{T}\tilde{h}_{u}^{+}$$

