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Recap What Universality?

MSSM – Broken SUSY

SUSY breaking is supposed to be generated spontaneously

But: Exact method is not known! So:

Supersymmetry is broken by hand by
adding SUSY breaking terms
The B- and L-breaking terms are
prohibited by R-parity
→ Lightest supersymmetric particle

(LSP) is absolutely stable

Over hundred new free parameters from the SUSY breaking!

Must try to reduce the parameter space

Jari Laamanen Non-Universal gaugino masses and Dark Matter 3 / 19



Helsinki Institute of Physics Finland
Recap What Universality?

Universality Assumptions

SUSY breaking is assumed to be universal at the GUT scale

Most of the new parameters imply flavor mixing or large
CP-violation implies ’universality‘

If one assumes that no flavor or CP-violation is generated:

Soft supersymmetry breaking universality

3 real independent gaugino masses

5 real squark and slepton squared masses

3 real scalar cubic coupling parameters

4 Higgs mass parameters

This is valid at the GUT scale
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Recap What Universality?

mSUGRA Parameters

Hidden-visible separation of superpotential (and [minimal] Kähler
potential) gives a common mass scale for the squared masses,
common mass for the trilinear and bilinear couplings.

But not for the gaugino masses!

1 m0, A0, B0 ← Common
2 m1/2 ← Universal gaugino mass (for convenience)
3 µ← Supersymmetric Higgs mass parameter (considered as fifth

input parameter)

Usually people write B0µ.
After the EWSB µ and B0 ⇒ sgn(µ) and tan β = 〈H0

2 〉/〈H
0
1 〉.
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Non-Universality From SU(5) GUT SU(5) Breaking the Symmetries

SUSY SU(5)

Why consider SU(5)?
1 It is the simplest model for GUT
→ Gives nicely the SU(3) × SU(2) × U(1) structure

2 Gives well specified non-universality for gauginos

Non-universality of gauginos can be motivated,
and the predictivity is maintained!

⇒ Easier to see phenomenological consequences
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Non-Universality From SU(5) GUT SU(5) Breaking the Symmetries

Gaugino Mass Terms

Masses come from the coupling of the

fab gauge kinetic function

W a gauge field strength
Lg.k .

=
∫

d2θ fab(Φ)W aW b

The gauge kinetic function must be non-minimal. Then

Lg.k .

⊃
〈FΦ〉ab

MP
λaλb + H.C.,

〈FΦ〉 ← is the vev for the F-term of Φ

Breaks SUSY

Non-singlet w.r.t. SU(5) – breaks SU(5)
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Non-Universality From SU(5) GUT SU(5) Breaking the Symmetries

Choice of Representations

The gauge multiplets are in the adjoint
representation⇒ 〈FΦ〉 transforms as a
symmetric product of two adjoints

〈FΦ〉ab λaλb

(must be gauge invariant)

Therefore, Φ can belong to any of the (irreducible) representations of

(24⊗ 24)Symm = 1⊕ 24⊕ 75⊕ 200.

If Φ does not belong to rep 1,
resulting gaugino masses are non-universal
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Non-Universality From SU(5) GUT SU(5) Breaking the Symmetries

Ratios of the Gaugino Masses

Parameters are run down to the EW-scale using RGE’s

Table: Ratios of the gaugino masses at the GUT and EW scales

FΦ MGUT1 MGUT2 MGUT3 MEW
1 MEW

2 MEW
3

1 1 1 1 0.14 0.29 1
24 -0.5 -1.5 1 -0.07 -0.43 1
75 -5 3 1 -0.72 0.87 1
200 10 2 1 1.44 0.58 1

Smallest of (MEW
1 , MEW

2 ) characterizes the lightest neutralino

Note: Φ can also transform as a linear composition of any of the
representations
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Non-Universality From SU(5) GUT SU(5) Breaking the Symmetries

Neutralinos Are Born at the EWSB

Neutralinos are combinations of gauginos and higgsinos

M χ̃0 =




M1 0 −cβ sW mZ sβ sW mZ

0 M2 cβ cW mZ −sβ cW mZ

−cβ sW mZ cβ cW mZ 0 −µ

sβ sW mZ −sβ cW mZ −µ 0




[sβ = sin β, cβ = cos β, sW = sin θW , and cW = cos θW ]

Diagonalize M χ̃0 ⇒ Four neutralino masses

Relevant: Respective relations between M1, M2 and µ.
Remember: µ is determined by the EWSB
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Dark Matter Relic Density Higgses from Cascades

Dark Matter

Bullet cluster:
Blue = dark matter
Red = hot gas

Supersymmetric theories which preserve
R-parity contain a natural candidate for the
cold dark matter (CDM) particle.

A CDM candidate must be weakly
interacting and massive (WIMP)

Neutralino!

Usually the lightest neutralino is bino-like
⇒ too high thermal relic density

The non-universal gaugino masses changes the neutralino
composition
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Dark Matter Relic Density Higgses from Cascades

Relic Density

1 Early universe: WIMP’s in thermal
equilibrium

2 Expansion & Cooling⇒
annihilation reduces density

3 Eventually, density is too low to maintain
annihilation⇒ Freeze-out

4 From here on, the relic density depends
only on expansion rate of the universe

Relic density Ωh2 observed today can be calculated for each model.
( Ω=ρ/ρc with ρc= critical density to close the Universe)
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Dark Matter Relic Density Higgses from Cascades
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Dark Matter Relic Density Higgses from Cascades

Rep 24 – Large relic density
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Rep 24 – Large relic density
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Dark Matter Relic Density Higgses from Cascades
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Dark Matter Relic Density Higgses from Cascades

Rep 75 – Large Higgsino Component
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Dark Matter Relic Density Higgses from Cascades
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Dark Matter Relic Density Higgses from Cascades

Rep 75 – Large Higgsino Component
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Dark Matter Relic Density Higgses from Cascades

Rep 200
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Dark Matter Relic Density Higgses from Cascades

Higgs Production in the Cascade q̃, g̃ → χ̃0
2 → hχ̃0

1

At the LHC squarks and gluinos are produced a lot
If squarks and gluinos are light enough to be produced, the
production cross section will be large

A possible way to look for the Higgs bosons is through the
cascade

q̃, g̃ → χ̃0
2 + X → χ̃0

1 h/H/A + X → χ̃0
1bb̄ + X

e.g. for the final state bb̄bb̄ + X .
Weakly dependent on tan β⇒ May help Higgs searches in the low
and moderate tan β regions

Take now mg̃ > mq̃ ⇒ Every gluino decays to a quark and the
corresponding squark (qq̃).
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Dark Matter Relic Density Higgses from Cascades

Heavy Neutral Higgs Cascade in Rep 24 at the LHC
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Summary

Summary

Non-universal gaugino masses can
1 help to find heavy Higgses
2 help to dilute excess relic density

The ratios of the two lightest neutralino masses
changes significantly with the representation.

It is important to realize that there is no automatically theoretical
preference for the gaugino masses to be unified

Gaugino Non-Universality must be considered as a serious option
– Not a complication, but an opportunity!
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4 Appendix
Main Component of the Lightest Neutralino
Constraints
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Appendix: Main component of the χ0
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Appendix Main Component of the Lightest Neutralino Constraints

Constraints

For the relic density, the WMAP three year limits are used

ΩCDMh2 = 0.11054+0.00976
−0.00956.

The curve mh = 114 GeV is depicted in the figures. For the shown
parameter region, when otherwise experimentally allowed, Higgs is
always heavier than 91 GeV, which is the Higgs mass limit in MSSM for
tan β > 10 assuming maximal top mixing.

The latest world average of

B(b → sγ) = (355± 24+9
−10 ± 3)× 10−6

for the branching fraction for the decay b → sγ was used.
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