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Motivation

The LHC – early/mid- 2008.

Low energy supersymmetry as a solution to the hierarchy problem.

SUSY must be broken: soft terms - gaugino and scalar masses,
A-terms etc.

What does string theory predict for the supersymmetry breaking
pattern?

Moduli stabilisation and supersymmetry breaking closely related.

Take the top down approach: study classes of string theory models
with stabilised moduli and try to find firm predictions.
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Review of Moduli Stabilisation

Most of the work done in context of Type IIB string theory.

Consider compactifications on a Calabi-Yau orientifold, resulting in an
N = 1, d = 4 theory.

Moduli appear in the effective 4D theory - massless scalar fields that
are experimentally excluded.

Two types of moduli, coming from closed and open strings.

Closed string moduli are divided into complex structure (shape) and
Kähler (size) moduli.
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Flux Compactifications and the KKLT
scenario

One may turn on RR (F3) and NSNS (H3) 3-fluxes on the internal
manifold.

Superpotential generated in the low energy theory (GVW
superpotential)

W =

∫

G3 ∧ Ω, G3 = F3 − τH3

This generically fixes all the complex structure moduli, the dilaton τ ,
as well as most open string moduli.

The Kähler moduli fixed by non-perturbative contributions to
superpotential (KKLT scenario).
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Large Volume Constructions

Obtained in [hep-th/0502058] (Balasubramanian, Berglund, Conlon
and Quevedo) by taking into account leading order α′ correction to
Kähler potential K:

K = −2 log(V + ξ)

Large class of minima with different properties to KKLT ones. Most
importantly: volume exponentially large and SUSY broken in an AdS
minimum.

Needs at least two Kähler moduli, Tb and Ts. The volume is

V ∝ (Tb + T ∗
b )3/2 − (Ts + T ∗

s )3/2

Tb overall volume, Ts small ’blow-up’ cycle.
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The superpotential is

W = W0 + Ase
−asTs(+Abe

−abTb)

Note that a superpotential term for Tb is not required - perturbatively
stabilised!

Full scalar potential

V =
e−2asτs

V − e−asτs

V2
+

ξ

V3

(the axion in Ts fixes the middle sign)

A minimum is found at

τs = O(1)

V ∼ easτs
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Scales in LV Compactifications

Works for W0 ∼ 1, unlike KKLT. Generalises to more than two
moduli.

ms ∼ MP√
V

msoft ∼ m3/2 ∼ MP W0

V .

With W0 ≈ 1 (no fine tuning), need V ∼ 1015l6s - this is easily
obtainable. Large volume is a natural source of hierarchies.

With V ∼ 1015 (in l6s) get ms ∼ 1011GeV. Intermediate scale scenario
=⇒ no gauge coupling unification.
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Assume local brane model giving the matter content of the MSSM:
magnetised D7 branes.
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Soft Terms in Large Volume
Compactifications

Standard formalism for computing gravity mediated soft terms in
SUGRA.

Requires knowledge of:

K(h, φ) = K̂(h) + K̃i(h)φiφ
∗
i .

Also need gauge kinetic functions fa.

The F-terms quantify the amount of SUSY breaking:

Fm = eK/2Kmn̄DnW.

From there one computes

Ma =
1

2

Fm∂mfa

Refa
.

m2

i = (m2

3/2
+ V0) − FmF̄ n̄∂m∂n̄K̃i,

etc.
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Soft Terms II

Suppose all branes wrap the same (small) cycle Ts.

The gauge kinetic functions may be computed from the DBI action.

fa =
Ts

4π
+ ha(F )

Magnetic fluxes F responsible for chirality. Their presence gives
unknown corrections to the gauge kinetic functions and Kähler
potentials.
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High Scale Soft Terms

In the diluted flux limit F = 0 (i.e. τs ≫ ǫ),

Mi = M

ma =
M√

3
A = −M

B = −4M

3
.

Here M = F s/(2τs).

Introduce now perturbations due to corrections ǫα to K̃.

Mi = M(1 + ǫi)

ma =
M√

3
(1 + ǫa)

Aabc = − 1√
3
(ma + mb + mc)
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Spectra I

The B-term condition cannot be satisfied and we effectively make B a
free parameter, scanning over tan β.

Can now generate soft terms at high scale with uniform random
fluctuations.

Evolve to MZ using SoftSusy (B. Allanach).

Make sure spectra satisfy constraints on (g − 2)µ, BR(b → sγ), mh.

Also check upper bound on Ωh2 - there could be other contributions
to dark matter besides the χ̃0

1
, so ignore lower bound.

Use micrOMEGAs to compute all of these.
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Spectra II

The spectra with mg̃ ≈ 900GeV fixed in order to set overall scale,
with 20% fluctuations at high scale.
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Spectra III

On the whole fairly similar to an SPS1 type mSUGRA spectrum, but
there are some important differences.

LSP mostly bino but can have sizeable wino component.

Spectrum more ’bunched’ - the particle masses have less time to run
since the string scale is intermediate and approximate unification
takes place there.

The gaugino mass ratio at the low scale is
M1 : M2 : M3 = (1.5 − 2) : 2 : 6. In mSUGRA one has 1 : 2 : 6.

Gaugino mass ratios hold even if matter content not just MSSM.

Squark masses do not vary much when mg̃ is fixed. The slepton
masses do.

Discrimination of models - two approaches. Counting observables and
kinematic observables.
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The number of dilepton (and thus trilepton) events varies a lot even
when the overall spectrum mass scale is fixed - mg̃ ≈ 900GeV.
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χ̃0

2
→ l̃±l∓ → l±l∓χ̃0

1
.

Depending on the mass differences mχ̃0
2
− mχ̃0

1
, mχ̃0

2
− ml̃R

,
ml̃R

− mχ̃0
1
, we may see many or few dileptons.

If there are not many dileptons, the spectrum will be hard to
reconstruct as lepton observables are cleanest (∼ 90% tagging
efficiency for e, µ).
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Spectrum Reconstruction

We consider a spectrum with many OSSF dilepton events, so that the
chain χ̃0

2
→ l̃±l∓ → l±l∓χ̃0

1
can be reconstructed.

The gluino is at mg̃ = 909 GeV.

Squark masses (all in GeV):

md̃L
= 800,mũL

= 792, ...

The slepton and neutralino masses are

mẽR,µ̃R
= 270, ...

mχ̃0
1

= 233,mχ̃0
2

= 303,mχ̃0
3

= 460,mχ̃0
4

= 483.

The chargino masses are mχ̃+

1

= 303,mχ̃+

2

= 480.
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Spectrum Reconstruction II

Use the standard techniques: ll endpoint, qll endpoint and threshold,
ql endpoint.
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Spectrum Reconstruction II

Use the standard techniques: ll endpoint, qll endpoint and threshold,
ql endpoint.

Generate 100fb−1 of data with backgrounds (except W+jets and
Z+jets).

Cuts are as in ATLAS TDR:
1 Four hard jets with PT > 100, 50, 50, 50GeV.
2 Isolated lepton PT > 10GeV.
3 Emiss

T > 0.2Meff , with

Meff = PT1
+ PT2

+ PT3
+ PT4

+ Emiss
T .
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Can be reconstructed with very good accuracy, ±0.15GeV.
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Spectrum Reconstruction III

qll, ql endpoints use the decay chain q̃L → qχ̃0

2
→ ql̃±l∓ → ql±l∓χ̃0

1
.
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Smeared due to jet finding algorithm, combinatorics etc.

K. Suruliz (DAMTP, Cambridge) July 2007 21 / 26



Spectrum Reconstruction III

qll, ql endpoints use the decay chain q̃L → qχ̃0

2
→ ql̃±l∓ → ql±l∓χ̃0

1
.

Use lighter qll mass, since the hardest jet probably came from
q̃R → qχ̃0

1
.

(Lighter) qll invariant mass has an endpoint at

Mmax
qll =

√

√

√

√

(m2

q̃L
− m2

χ̃0
2

)(m2

χ̃0
2

− m2

χ̃0
1

)

m2

χ̃0
2

Smeared due to jet finding algorithm, combinatorics etc.

Heavier ql invariant mass should give endpoint at

Mmax
ql =

√

√

√

√

(m2

q̃L
− m2

χ̃0
2

)(m2

χ̃0
2

− m2

l̃R
)

m2

χ̃0
2

K. Suruliz (DAMTP, Cambridge) July 2007 21 / 26



Spectrum Reconstruction IV
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Spectrum Reconstruction IV

Fit histograms using MINUIT and MINOS.
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Spectrum Reconstruction IV

Fit histograms using MINUIT and MINOS.

Assuming that we can get rid of systematic errors, obtain

Mmax
ll = 69.4 ± 0.15GeV

Mmax
qll = 467.6 ± 6.0GeV

Mmax
ql = 330.5 ± 4.0GeV

Mmin
qll = 202.8 ± 10.0GeV.
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Spectrum Reconstruction IV

Fit histograms using MINUIT and MINOS.

Assuming that we can get rid of systematic errors, obtain

Mmax
ll = 69.4 ± 0.15GeV

Mmax
qll = 467.6 ± 6.0GeV

Mmax
ql = 330.5 ± 4.0GeV

Mmin
qll = 202.8 ± 10.0GeV.

Now fit mass differences: this is done by random generation of masses
for χ̃0

1
, χ̃0

2
, l̃R, q̃L, calculating Mmax

ll ,Mmax
qll ,Mmax

ql ,Mmin
qll and using

an e−χ2/2 probability distribution.

K. Suruliz (DAMTP, Cambridge) July 2007 22 / 26



Spectrum Reconstruction V
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Spectrum Reconstruction V

Can reconstruct mass differences well:
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Comparison with mSUGRA I
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Comparison with mSUGRA I

Fitting the mass difference graphs gives

ml̃R
− mχ̃0

1
= 37.3 ± 1.6GeV

mχ̃0
2
− mχ̃0

1
= 69.4 ± 1.0GeV

mq̃L
− mχ̃0

1
= 568 ± 22GeV

K. Suruliz (DAMTP, Cambridge) July 2007 24 / 26



Comparison with mSUGRA I

Fitting the mass difference graphs gives

ml̃R
− mχ̃0

1
= 37.3 ± 1.6GeV

mχ̃0
2
− mχ̃0

1
= 69.4 ± 1.0GeV

mq̃L
− mχ̃0

1
= 568 ± 22GeV

Can we discriminate this from a generic mSUGRA scenario?

K. Suruliz (DAMTP, Cambridge) July 2007 24 / 26



Comparison with mSUGRA I

Fitting the mass difference graphs gives

ml̃R
− mχ̃0

1
= 37.3 ± 1.6GeV

mχ̃0
2
− mχ̃0

1
= 69.4 ± 1.0GeV

mq̃L
− mχ̃0

1
= 568 ± 22GeV

Can we discriminate this from a generic mSUGRA scenario?

Answer: yes - use the ratio M1 : M2 : M3 = 1 : 2 : 6.
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Comparison with mSUGRA II
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Comparison with mSUGRA II

In mSUGRA mg̃ ≈ 6mχ̃0
1

and mχ̃0
2
≈ 2mχ̃0

1
.
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Comparison with mSUGRA II

In mSUGRA mg̃ ≈ 6mχ̃0
1

and mχ̃0
2
≈ 2mχ̃0

1
.

Thus
mg̃ − mχ̃0

1

mχ̃0
2
− mχ̃0

1

≈ 5.

In mSUGRA also have
mq̃L

mg̃
. 1.

Thus expect
mq̃L

− mχ̃0
1

mχ̃0
2
− mχ̃0

1

. 5.

However, we measured

mq̃L
− mχ̃0

1

mχ̃0
2
− mχ̃0

1

= 8.11 ± 0.31.
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Conclusions

Performed detailed study of spectra and phenomenology of Large
Volume models, quantifying uncertainties in high-energy soft terms.

Distinctive pattern of gaugino masses
M1 : M2 : M3 = (1.5 − 2) : 2 : 6 which may be distinguished from
mSUGRA and mirage mediation. This is true even if size of
fluctuations increased from 20% to 40%.

Phenomenology depends heavily on mass difference of M1 and M2

and the slepton masses.

In favourable cases, we can measure (certainly in 3 years of LHC
running) mass differences well enough to discriminate against other
popular models.

Thank you for your attention
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